Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Метод наименьших квадратов

Лекция



Привет, сегодня поговорим про метод наименьших квадратов, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое метод наименьших квадратов , настоятельно рекомендую прочитать все из категории Теория вероятностей. Математическая статистика и Стохастический анализ .

метод наименьших квадратов (МНК, англ. Ordinary Least Squares, OLS) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функцией. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.

История

До начала XIX в. ученые не имели определенных правил для решения системы уравнений, в которой число неизвестных меньше, чем число уравнений; до этого времени употреблялись частные приемы, зависевшие от вида уравнений и от остроумия вычислителей, и потому разные вычислители, исходя из тех же данных наблюдений, приходили к различным выводам. Гауссу (1795) принадлежит первое применение метода, а Лежандр (1805) независимо открыл и опубликовал его под современным названием (фр. Méthode des moindres quarrés) . Лаплас связал метод с теорией вероятностей, а американский математик Эдрейн (1808) рассмотрел его теоретико-вероятностные приложения . Метод распространен и усовершенствован дальнейшими изысканиями Энке, Бесселя, Ганзена и других.

Работы А. А. Маркова в начале XX века позволили включить метод наименьших квадратов в теорию оценивания математической статистики, в которой он является важной и естественной частью. Усилиями Ю. Неймана, Ф.Дэвида, А. Эйткена, С. Рао было получено немало важных результатов в этой области .

Метод наименьших квадратов
Пример кривой, проведенной через точки, имеющие нормально распределенное отклонение от истинного значения.

Сущность метода наименьших квадратов

Пусть Метод наименьших квадратов — набор Метод наименьших квадратов неизвестных переменных (параметров), Метод наименьших квадратов — совокупность функций от этого набора переменных. Задача заключается в подборе таких значений x, чтобы значения этих функций были максимально близки к некоторым значениям Метод наименьших квадратов. По существу речь идет о «решении» переопределенной системы уравнений Метод наименьших квадратов в указанном смысле максимальной близости левой и правой частей системы. Сущность МНК заключается в выборе в качестве «меры близости» суммы квадратов отклонений левых и правых частей — Метод наименьших квадратов. Таким образом, сущность МНК может быть выражена следующим образом:

Метод наименьших квадратов

В случае, если система уравнений имеет решение, то минимум суммы квадратов будет равен нулю и могут быть найдены точные решения системы уравнений аналитически или, например, различными численными методами оптимизации. Если система переопределена, то есть, говоря нестрого, количество независимых уравнений больше количества искомых переменных, то система не имеет точного решения и метод наименьших квадратов позволяет найти некоторый «оптимальный» вектор Метод наименьших квадратов в смысле максимальной близости векторов Метод наименьших квадратов и Метод наименьших квадратов или максимальной близости вектора отклонений Метод наименьших квадратов к нулю (близость понимается в смысле евклидова расстояния).

Пример — система линейных уравнений

В частности, метод наименьших квадратов может использоваться для «решения» системы линейных уравнений

Метод наименьших квадратов,

где матрица Метод наименьших квадратов не квадратная, а прямоугольная размера Метод наименьших квадратов (точнее ранг матрицы A больше количества искомых переменных).

Такая система уравнений, в общем случае не имеет решения. Поэтому эту систему можно «решить» только в смысле выбора такого вектора Метод наименьших квадратов, чтобы минимизировать «расстояние» между векторами Метод наименьших квадратов и Метод наименьших квадратов. Для этого можно применить критерий минимизации суммы квадратов разностей левой и правой частей уравнений системы, то есть Метод наименьших квадратов. Нетрудно показать, что решение этой задачи минимизации приводит к решению следующей системы уравнений

Метод наименьших квадратов

Используя оператор псевдоинверсии, решение можно переписать так:

Метод наименьших квадратов,

где Метод наименьших квадратов — псевдообратная матрица для Метод наименьших квадратов.

Данную задачу также можно «решить» используя так называемый взвешенный МНК (см. ниже), когда разные уравнения системы получают разный вес из теоретических соображений.

Строгое обоснование и установление границ содержательной применимости метода даны А. А. Марковым и А. Н. Колмогоровым.

МНК в регрессионном анализе ( аппроксимация данных)

Пусть имеется Метод наименьших квадратов значений некоторой переменной Метод наименьших квадратов (это могут быть результаты наблюдений, экспериментов и т. д.) и соответствующих переменных Метод наименьших квадратов. Задача заключается в том, чтобы взаимосвязь между Метод наименьших квадратов и Метод наименьших квадратов аппроксимировать некоторой функцией Метод наименьших квадратов, известной с точностью до некоторых неизвестных параметров Метод наименьших квадратов, то есть фактически найти наилучшие значения параметров Метод наименьших квадратов, максимально приближающие значения Метод наименьших квадратов к фактическим значениям Метод наименьших квадратов. Об этом говорит сайт https://intellect.icu . Фактически это сводится к случаю «решения» переопределенной системы уравнений относительно Метод наименьших квадратов:

Метод наименьших квадратов

В регрессионном анализе и в частности в эконометрике используются вероятностные модели зависимости между переменными

Метод наименьших квадратов

где Метод наименьших квадратов — так называемые случайные ошибки модели.

Соответственно, отклонения наблюдаемых значений Метод наименьших квадратов от модельных Метод наименьших квадратов предполагается уже в самой модели. Сущность МНК (обычного, классического) заключается в том, чтобы найти такие параметры Метод наименьших квадратов, при которых сумма квадратов отклонений (ошибок, для регрессионных моделей их часто называют остатками регрессии) Метод наименьших квадратов будет минимальной:

Метод наименьших квадратов

где Метод наименьших квадратов — англ. Residual Sum of Squares определяется как:

Метод наименьших квадратов

В общем случае решение этой задачи может осуществляться численными методами оптимизации (минимизации). В этом случае говорят о нелинейном МНК (NLS или NLLS — англ. Non-Linear Least Squares). Во многих случаях можно получить аналитическое решение. Для решения задачи минимизации необходимо найти стационарные точки функции Метод наименьших квадратов, продифференцировав ее по неизвестным параметрам Метод наименьших квадратов, приравняв производные к нулю и решив полученную систему уравнений:

Метод наименьших квадратов

МНК в случае линейной регрессии

Пусть регрессионная зависимость является линейной:

Метод наименьших квадратов

Пусть y — вектор-столбец наблюдений объясняемой переменной, а Метод наименьших квадратов — это Метод наименьших квадратов-матрица наблюдений факторов (строки матрицы — векторы значений факторов в данном наблюдении, по столбцам — вектор значений данного фактора во всех наблюдениях). Матричное представление линейной модели имеет вид:

Метод наименьших квадратов

Тогда вектор оценок объясняемой переменной и вектор остатков регрессии будут равны

Метод наименьших квадратов

соответственно сумма квадратов остатков регрессии будет равна

Метод наименьших квадратов

Дифференцируя эту функцию по вектору параметров Метод наименьших квадратов и приравняв производные к нулю, получим систему уравнений (в матричной форме):

Метод наименьших квадратов.

В расшифрованной матричной форме эта система уравнений выглядит следующим образом:


\begin{pmatrix}
\sum x^2_{t1}&\sum x_{t1}x_{t2}&\sum x_{t1}x_{t3}&...&\sum x_{t1}x_{tk} \\
\sum x_{t2}x_{t1}&\sum x^2_{t2}&\sum x_{t2}x_{t3}&...&\sum x_{t2}x_{tk} \\
\sum x_{t3}x_{t1}&\sum x_{t3}x_{t2}&\sum x^2_{t3}&...&\sum x_{t3}x_{tk} \\
...\\
\sum x_{tk}x_{t1}&\sum x_{tk}x_{t2}&\sum x_{tk}x_{t3}&...&\sum x^2_{tk} \\

\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
b_3 \\
... \\
b_k \\
\end{pmatrix}
=
\begin{pmatrix}
\sum x_{t1}y_{t} \\
\sum x_{t2}y_{t} \\
\sum x_{t3}y_{t} \\
...\\
\sum x_{tk}y_{t} \\
\end{pmatrix},
где все суммы берутся по всем допустимым значениям Метод наименьших квадратов.

Если в модель включена константа (как обычно), то Метод наименьших квадратов при всех Метод наименьших квадратов, поэтому в левом верхнем углу матрицы системы уравнений находится количество наблюдений Метод наименьших квадратов, а в остальных элементах первой строки и первого столбца — просто суммы значений переменных: Метод наименьших квадратов и первый элемент правой части системы — Метод наименьших квадратов.

Решение этой системы уравнений и дает общую формулу МНК-оценок для линейной модели:

Метод наименьших квадратов

Для аналитических целей оказывается полезным последнее представление этой формулы (в системе уравнений при делении на n, вместо сумм фигурируют средние арифметические). Если в регрессионной модели данные центрированы, то в этом представлении первая матрица имеет смысл выборочной ковариационной матрицы факторов, а вторая — вектор ковариаций факторов с зависимой переменной. Если кроме того данные еще и нормированы на СКО (то есть в конечном итогестандартизированы), то первая матрица имеет смысл выборочной корреляционной матрицы факторов, второй вектор — вектора выборочных корреляций факторов с зависимой переменной.

Немаловажное свойство МНК-оценок для моделей с константой — линия построенной регрессии проходит через центр тяжести выборочных данных, то есть выполняется равенство:

Метод наименьших квадратов

В частности, в крайнем случае, когда единственным регрессором является константа, получаем, что МНК-оценка единственного параметра (собственно константы) равна среднему значению объясняемой переменной. То есть среднее арифметическое , известное своими хорошими свойствами из законов больших чисел, также является МНК-оценкой — удовлетворяет критерию минимума суммы квадратов отклонений от нее.

Простейшие частные случаи

В случае парной линейной регрессии Метод наименьших квадратов, когда оценивается линейная зависимость одной переменной от другой, формулы расчета упрощаются (можно обойтись без матричной алгебры). Система уравнений имеет вид:


\begin{pmatrix}
1&\bar{x}\\
\bar{x}&\bar{x^2}\\
\end{pmatrix}

\begin{pmatrix}
a\\
b\\
\end{pmatrix}
=
\begin{pmatrix}
\bar{y}\\
\overline{xy}\\
\end{pmatrix}

Отсюда несложно найти оценки коэффициентов:


\begin{cases}
\hat {b}=\frac {\mathop{\textrm{Cov}}(x,y)}{\mathop{\textrm{Var}}(x)}=\frac {\overline{xy}-\bar{x}\bar{y}}{\overline{x^2}-{\overline{x}}^2}\\
\hat {a}=\bar {y}-b \bar {x}
\end{cases}

Несмотря на то что в общем случае модели с константой предпочтительней, в некоторых случаях из теоретических соображений известно, что константа Метод наименьших квадратов должна быть равна нулю. Например, в физике зависимость между напряжением и силой тока имеет вид Метод наименьших квадратов; замеряя напряжение и силу тока, необходимо оценить сопротивление. В таком случае речь идет о модели Метод наименьших квадратов. В этом случае вместо системы уравнений имеем единственное уравнение

Метод наименьших квадратов

Следовательно, формула оценки единственного коэффициента имеет вид

Метод наименьших квадратов

Статистические свойства МНК-оценок

В первую очередь , отметим, что для линейных моделей МНК-оценки являются линейными оценками, как это следует из вышеприведенной формулы. Длянесмещенности МНК-оценок необходимо и достаточно выполнения важнейшего условия регрессионного анализа: условное по факторам математическое ожиданиеслучайной ошибки должно быть равно нулю. Данное условие, в частности, выполнено, если

  1. математическое ожидание случайных ошибок равно нулю, и
  2. факторы и случайные ошибки — независимые случайные величины .

Первое условие можно считать выполненным всегда для моделей с константой, так как константа берет на себя ненулевое математическое ожидание ошибок (поэтому модели с константой в общем случае предпочтительнее).

Второе условие — условие экзогенности факторов — принципиальное. Если это свойство не выполнено, то можно считать, что практически любые оценки будут крайне неудовлетворительными: они не будут даже состоятельными (то есть даже очень большой объем данных не позволяет получить качественные оценки в этом случае). В классическом случае делается более сильное предположение о детерминированности факторов, в отличие от случайной ошибки, что автоматически означает выполнение условия экзогенности. В общем случае для состоятельности оценок достаточно выполнения условия экзогенности вместе со сходимостью матрицы Метод наименьших квадратов к некоторой невырожденной матрице при увеличении объема выборки до бесконечности.

Для того, чтобы кроме состоятельности и несмещенности, оценки (обычного) МНК были еще и эффективными (наилучшими в классе линейных несмещенных оценок) необходимо выполнение дополнительных свойств случайной ошибки:

  • Постоянная (одинаковая) дисперсия случайных ошибок во всех наблюдениях (отсутствие гетероскедастичности): Метод наименьших квадратов
  • Отсутствие корреляции (автокорреляции) случайных ошибок в разных наблюдениях между собой Метод наименьших квадратов

Данные предположения можно сформулировать для ковариационной матрицы вектора случайных ошибок Метод наименьших квадратов

Линейная модель , удовлетворяющая таким условиям, называется классической. МНК-оценки для классической линейной регрессии являются несмещенными,состоятельными и наиболее эффективными оценками в классе всех линейных несмещенных оценок (в англоязычной литературе иногда употребляют аббревиатуруBLUE (Best Linear Unbiased Estimator) — наилучшая линейная несмещенная оценка; в отечественной литературе чаще приводится теорема Гаусса — Маркова). Как нетрудно показать, ковариационная матрица вектора оценок коэффициентов будет равна:

Метод наименьших квадратов

Эффективность означает, что эта ковариационная матрица является «минимальной» (любая линейная комбинация коэффициентов, и в частности сами коэффициенты, имеют минимальную дисперсию), то есть в классе линейных несмещенных оценок оценки МНК-наилучшие. Диагональные элементы этой матрицы — дисперсии оценок коэффициентов — важные параметры качества полученных оценок. Однако рассчитать ковариационную матрицу невозможно, поскольку дисперсия случайных ошибок неизвестна. Можно доказать, что несмещенной и состоятельной (для классической линейной модели) оценкой дисперсии случайных ошибок является величина:

Метод наименьших квадратов

Подставив данное значение в формулу для ковариационной матрицы и получим оценку ковариационной матрицы. Полученные оценки также являются несмещеннымии состоятельными. Важно также то, что оценка дисперсии ошибок (а значит и дисперсий коэффициентов) и оценки параметров модели являются независимыми случайными величинами, что позволяет получить тестовые статистики для проверки гипотез о коэффициентах модели.

Необходимо отметить, что если классические предположения не выполнены, МНК-оценки параметров не являются наиболее эффективными оценками (оставаясьнесмещенными и состоятельными). Однако, еще более ухудшается оценка ковариационной матрицы — она становится смещенной и несостоятельной. Это означает, что статистические выводы о качестве построенной модели в таком случае могут быть крайне недостоверными. Одним из вариантов решения последней проблемы является применение специальных оценок ковариационной матрицы, которые являются состоятельными при нарушениях классических предположений (стандартные ошибки в форме Уайта и стандартные ошибки в форме Ньюи-Уеста). Другой подход заключается в применении так называемого обобщенного МНК.

Обобщенный МНК

Метод наименьших квадратов допускает широкое обобщение . Вместо минимизации суммы квадратов остатков можно минимизировать некоторую положительно определенную квадратичную форму от вектора остатков Метод наименьших квадратов, где Метод наименьших квадратов — некоторая симметрическая положительно определенная весовая матрица. Обычный МНК является частным случаем данного подхода, когда весовая матрица пропорциональна единичной матрице. Как известно из теории симметрических матриц (или операторов) для таких матриц существует разложение Метод наименьших квадратов. Следовательно, указанный функционал можно представить следующим образом Метод наименьших квадратов, то есть этот функционал можно представить как сумму квадратов некоторых преобразованных «остатков». Таким образом, можно выделить класс методов наименьших квадратов — LS-методы (Least Squares).

Доказано ( теорема Айткена), что для обобщенной линейной регрессионной модели (в которой на ковариационную матрицу случайных ошибок не налагается никаких ограничений) наиболее эффективными (в классе линейных несмещенных оценок) являются оценки т. н. обобщенного МНК (ОМНК, GLS — Generalized Least Squares) — LS-метода с весовой матрицей, равной обратной ковариационной матрице случайных ошибок: Метод наименьших квадратов.

Можно показать, что формула ОМНК-оценок параметров линейной модели имеет вид

Метод наименьших квадратов

Ковариационная матрица этих оценок соответственно будет равна

Метод наименьших квадратов

Фактически сущность ОМНК заключается в определенном (линейном) преобразовании (P) исходных данных и применении обычного МНК к преобразованным данным. Цель этого преобразования — для преобразованных данных случайные ошибки уже удовлетворяют классическим предположениям.

Взвешенный МНК

В случае диагональной весовой матрицы (а значит и ковариационной матрицы случайных ошибок) имеем так называемый взвешенный МНК (WLS — Weighted Least Squares). В данном случае минимизируется взвешенная сумма квадратов остатков модели , то есть каждое наблюдение получает «вес», обратно пропорциональный дисперсии случайной ошибки в данном наблюдении: Метод наименьших квадратов. Фактически данные преобразуются взвешиванием наблюдений (делением на величину, пропорциональную предполагаемому стандартному отклонению случайных ошибок), а к взвешенным данным применяется обычный МНК.

Вау!! 😲 Ты еще не читал? Это зря!

На этом все! Теперь вы знаете все про метод наименьших квадратов, Помните, что это теперь будет проще использовать на практике. Надеюсь, что теперь ты понял что такое метод наименьших квадратов и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Теория вероятностей. Математическая статистика и Стохастический анализ

создано: 2014-11-06
обновлено: 2024-11-14
1037



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Теория вероятностей. Математическая статистика и Стохастический анализ

Термины: Теория вероятностей. Математическая статистика и Стохастический анализ