Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Парадокс и проблема Монти Холла

Лекция



Привет, Вы узнаете о том , что такое парадокс монти холла, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое парадокс монти холла , настоятельно рекомендую прочитать все из категории Теория вероятностей. Математическая статистика и Стохастический анализ .

Парадокс и проблема Монти Холла
В поисках автомобиля игрок выбирает дверь № 1. Тогда ведущий открывает 3-ю дверь, за которой находится коза, и предлагает игроку изменить свой выбор на дверь № 2. Стоит ли ему это делать?
Парадокс и проблема Монти Холла
Распределение вероятностей. Из тех, кто менял дверь (нижний левый угол), двое получили машину и один — козу. Из тех, кто не менял (нижний правый угол) — наоборот.

парадокс монти холла — одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу. Эта задача не является парадоксом в узком смысле этого слова, так как не содержит в себе противоречия, она называется парадоксом потому, что ее решение может показаться неожиданным. Более того, многим людям бывает сложно принять правильное решение даже после того, как его им рассказали .

Задача впервые была опубликована (вместе с решением) в 1975 году в журнале «The American Statistician» профессором Калифорнийского университета Стивом Селвином. Она стала популярной после появления в журнале «Parade» в 1990 году.

Формулировка

Задача формулируется как описание игры, основанной на американской телеигре «Let’s Make a Deal», и названа в честь ведущего этой передачи. Наиболее распространенная формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine, звучит следующим образом:

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас — не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

После публикации немедленно выяснилось, что задача сформулирована некорректно: не все условия оговорены. Например, ведущий может придерживаться стратегии «адский Монти»: предлагать сменить выбор тогда и только тогда, когда игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора будет вести в такой ситуации к гарантированному проигрышу (см. ниже).

Наиболее популярной является задача с дополнительным условием участнику игры заранее известны следующие правила :

  • автомобиль равновероятно размещен за любой из трех дверей;
  • ведущий знает, где находится автомобиль;
  • ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
  • если у ведущего есть выбор, какую из двух дверей открыть (то есть, игрок указал на верную дверь, и за обеими оставшимися дверями — козы), он выбирает любую из них с одинаковой вероятностью.

В нижеследующем тексте обсуждается задача Монти Холла именно в этой формулировке.

Разбор

Дверь 1 Дверь 2 Дверь 3 Результат, если менять выбор Результат, если не менять выбор
Авто Коза Коза Коза Авто
Коза Авто Коза Авто Коза
Коза Коза Авто Авто Коза

Для стратегии выигрыша важно следующее: если вы меняете выбор двери после действий ведущего, то вы выигрываете, если изначально выбрали проигрышную дверь. Об этом говорит сайт https://intellect.icu . Это произойдет с вероятностью 23, так как изначально выбрать проигрышную дверь можно 2 способами из 3.

Но часто при решении этой задачи рассуждают примерно так: ведущий всегда в итоге убирает одну проигрышную дверь, и тогда вероятности появления автомобиля за двумя не открытыми становятся равны ½, вне зависимости от первоначального выбора. Но это неверно: хотя возможностей выбора действительно остается две, эти возможности (с учетом предыстории) не являются равновероятными. Это так, поскольку изначально все двери имели равные шансы быть выигрышными, но затем имели разные вероятности быть исключенными.

Для большинства людей этот вывод противоречит интуитивному восприятию ситуации, и благодаря возникающему несоответствию между логическим выводом и ответом, к которому склоняет интуитивное мнение, задача и называется парадоксом Монти Холла.

Еще более наглядной ситуация с дверями становится, если представить что дверей не 3, а, скажем 1000, и после выбора игрока ведущий убирает 998 лишних, оставляя 2 двери: ту, которую выбрал игрок и еще одну. Представляется более очевидным, что вероятности нахождения приза за этими дверьми различны, и не равны ½. Если мы меняем дверь, то проигрываем только в том случае, если сначала выбрали призовую дверь, вероятность чего 1:1000. Выигрываем же мы в том случае, если наш изначальный выбор был неправильным, а вероятность этого — 999 из 1000. В случае с 3 дверьми логика сохраняется, но вероятность выигрыша при смене решения соответственно 23, а не 9991000.

Другой способ рассуждения — замена условия эквивалентным. Представим, что вместо осуществления игроком первоначального выбора (пусть это будет всегда дверь № 1) и последующего открытия ведущим двери с козой среди оставшихся (то есть всегда среди № 2 и № 3), игроку нужно угадать дверь с первой попытки, но ему предварительно сообщается, что за дверью № 1 автомобиль может быть с исходной вероятностью (33 %), а среди оставшихся дверей указывается за какой из дверей автомобиля точно нет (0 %). Соответственно, на последнюю дверь всегда будет приходиться 67 %, и стратегия ее выбора предпочтительна.

Еще более наглядное рассуждение — заранее зная полные условия игры (то, что выбор предложат поменять) и заранее с этими условиями согласившись, игрок фактически в первый раз выбирает дверь, за которой приза, по его мнению, нет (и может ошибиться с вероятностью 13). Одновременно, косвенно он указывает на оставшиеся две двери, за одной из которых приз, по его мнению, есть, что дает шанс на выигрыш 23. Это эквивалентно игре, в которой ведущий бы в самом начале однократно предлагал игроку исключить одну "лишнюю" дверь и гарантированно открыть две оставшиеся.

Интуитивно понятное объяснение - есть 111 наборов из 3 дверей. Игрок во всех 111 наборах делает свой первоначальный выбор. Известно, что он угадал в 37 наборах. Ведущий убирает из всех 111 наборов по 1 двери. Мы получаем 111 наборов с двумя дверьми, где уже сделан первый выбор. В этих 111 наборах правильно выбрано 37 раз. Если игрок поменяет свой выбор, то эти 37 окажутся неправильными, но оставшиеся 74 - правильными.

Другое поведение ведущего

Классическая версия парадокса Монти Холла утверждает, что ведущий обязательно предложит игроку сменить дверь, независимо от того, выбрал тот машину или нет. Но возможно и более сложное поведение ведущего. В этой таблице кратко описаны несколько вариантов поведения. Если не сказано противное, призы равновероятно расположены за дверями, ведущий знает, где автомобиль, а если есть выбор — равновероятно выбирает из двух коз. Если ведущий влияет на вероятности, а не следует жесткой процедуре, то его цель — уберечь автомобиль от испытуемого. Цель испытуемого, соответственно, его забрать.

Поведение ведущего Результат
«Адский Монти»: ведущий предлагает сменить, если дверь правильная . Смена всегда даст козу.
«Ангельский Монти»: ведущий предлагает сменить, если дверь неправильная . Смена всегда даст автомобиль.
«Несведущий Монти» или «Монти Бух»: ведущий нечаянно падает, открывается дверь, и оказывается, что за ней не машина. Другими словами, ведущий сам не знает, что за дверями, открывает дверь полностью наугад, и только случайно за ней не оказалось автомобиля . Смена дает выигрыш в ½ случаев.
Именно так устроено американское шоу «Deal or No Deal» — правда, случайную дверь открывает сам игрок, и если за ней нет автомобиля, ведущий предлагает сменить.
Ведущий выбирает одну из коз и открывает ее, если игрок выбрал другую дверь. Смена дает выигрыш в ½ случаев.
Ведущий всегда открывает козу. Если выбран автомобиль, левая коза открывается с вероятностью p и правая с вероятностью q=1−p. [10] Если ведущий открыл левую дверь, смена дает выигрыш с вероятностью Парадокс и проблема Монти Холла. Если правую — Парадокс и проблема Монти Холла. Однако испытуемый никак не может повлиять на вероятность того, что будет открыта правая дверь — независимо от его выбора это произойдет с вероятностью Парадокс и проблема Монти Холла.
То же самое, p=q=½ (классический случай). Смена дает выигрыш с вероятностью 23.
То же самое, p=1, q=0 («бессильный Монти» — усталый ведущий стоит у левой двери и открывает ту козу, которая ближе). Если ведущий открыл правую дверь, смена дает гарантированный выигрыш. Если левую — вероятность ½.
Ведущий открывает козу всегда, если выбран автомобиль, и с вероятностью ½ в противном случае.[11] Смена дает выигрыш с вероятностью ½.
Общий случай: игра повторяется многократно, вероятность спрятать автомобиль за той или иной дверью, а также открыть ту или иную дверь произвольная, однако ведущий знает, где автомобиль, и всегда предлагает смену, открывая одну из коз.[12][13] Равновесие Нэша: ведущему выгоднее всего именно парадокс Монти Холла в классическом виде (вероятность выигрыша 23). Машина прячется за любой из дверей с вероятностью ; если есть выбор, открываем любую козу наугад.
То же самое, но ведущий может не открывать дверь вообще. Равновесие Нэша: ведущему выгодно не открывать дверь, вероятность выигрыша .

Вариант: задача трех узников

Задача предложена Мартином Гарднером в 1959 году.

Трое заключенных, A, B и С, заключены в одиночные камеры и приговорены к смертной казни. Губернатор случайным образом выбирает одного из них и милует его. Стражник, охраняющий заключенных, знает, кто помилован, но не имеет права сказать этого. Заключенный A просит стражника сказать ему имя того (другого) заключенного, кто точно будет казнен: «Если B помилован, скажи мне, что казнен будет C. Если помилован C, скажи мне, что казнен будет B. Если они оба будут казнены, а помилован я, подбрось монету, и скажи имя B или C».

Стражник говорит заключенному A, что заключенный B будет казнен. Заключенный A рад это слышать, поскольку он считает, что теперь вероятность его выживания стала ½, а не , как была до этого. Заключенный A тайно говорит заключенному С, что B будет казнен. Заключенный С также рад это слышать, поскольку он все еще полагает, что вероятность выживания заключенного А — , а его вероятность выживания возросла до 23. Как такое может быть?

Разбор

Знакомый с парадоксом Монти Холла теперь знает, что прав C и не прав A.

  • Помилуют A, стражник сказал B — вероятность 16.
  • Помилуют A, стражник сказал C — вероятность тоже 16.
  • Помилуют B, стражник сказал C — вероятность .
  • Помилуют C, стражник сказал B — вероятность тоже .

Так что фраза «Казнят B» оставляет 1-й и 4-й варианты — то есть 23 вероятности, что помилуют C, и , что A.

Люди думают, что вероятность ½, потому что они игнорируют суть вопроса, который заключенный A задает стражнику. Если бы стражник мог ответить на вопрос «Будет ли заключенный B казнен?», тогда в случае положительного ответа вероятность казни А действительно бы уменьшалась с 23 до ½.

К вопросу можно подойти и с другой стороны: если A помилуют, стражник скажет любое имя наугад; если A казнят — стражник скажет того, кого казнят вместе с A. Так что вопрос не даст A никакого дополнительного шанса на помилование.

Вау!! 😲 Ты еще не читал? Это зря!

Исследование, описанное в статье про парадокс монти холла, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое парадокс монти холла и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Теория вероятностей. Математическая статистика и Стохастический анализ

создано: 2021-06-07
обновлено: 2024-11-14
13



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Теория вероятностей. Математическая статистика и Стохастический анализ

Термины: Теория вероятностей. Математическая статистика и Стохастический анализ