Лекция
Это окончание невероятной информации про дисперсионный анализ.
...
последовать неверное истолкование результатов. Следует помнить, что в ковариационном анализе, в сущности, проводится регрессионный анализ внутри каждой ячейки для того, чтобы выделить ту часть дисперсии, которая соответствует ковариате. Предположение об однородности дисперсии/ковариации предполагает, что этот регрессионный анализ проводится при следующем ограничении: все регрессионные уравнения (наклоны) для всех ячеек одинаковы. Если это не выполняется, могут появиться большие ошибки. Модуль Дисперсионный анализ имеет несколько специальных критериев для проверки этого предположения. Можно посоветовать использовать эти критерии, для того, чтобы убедиться, что регрессионные уравнения для различных ячеек примерно одинаковы.
Сферичность и сложная симметрия
Причины использования многомерного подхода к повторным измерениям в дисперсионном анализе. В планах, содержащих факторы повторных измерений с более чем двумя уровнями, применение одномерного дисперсионного анализа требует дополнительных предположений: предположения о сложной симметрии и о сферичности. Эти предположения редко выполняются (см. ниже). Поэтому в последние годы многомерный дисперсионный анализ завоевал популярность в таких планах (оба подхода совмещены в модуле Дисперсионный анализ). Предположение о сложной симметрии состоит в том, что дисперсии (общие внутригрупповые) и ковариации (внутри групп) для различных повторных измерений однородны (одинаковы). Это достаточное условие для того, чтобы одномерный F критерий для повторных измерений был обоснованным (т.е. выданные F-значения в среднем соответствовали F-распределению). Однако, в данном случае, это не условие не является необходимым. Условие сферичности является необходимым и достаточным условием для обоснованного применения F-критерия. Смысл условия состоит в том, что внутри групп все наблюдения должны быть независимы и одинаково распределены. Природа этих предположений, а также влияние их нарушений обычно не очень хорошо описаны в книгах по дисперсионному анализу. Мы даем это описание в следующих параграфах. Там же будет показано, что результаты одномерного подхода могут отличаться от результатов многомерного подхода, и будет объяснено, что это означает.
Необходимость независимости гипотез. Общий способ анализа данных в дисперсионном анализе - это подгонка модели. Если относительно модели, соответствующей данным, имеются некоторые априорные гипотезы, то дисперсия разбивается для проверки этих гипотез (проверка главных эффектов, взаимодействий). С вычислительной точки зрения этот подход строит некоторое множество контрастов (множество сравнений средних в плане). Однако если контрасты не независимы друг от друга, то разбиение дисперсии на компоненты не имеет смысла. Например, если два контраста A и B тождественны, то соответственная им компонента дисперсии выделяется дважды. Например, глупо и бессмысленно выделять две гипотезы: "среднее в ячейке 1 выше среднего в ячейке 2" и "среднее в ячейке 1 выше среднего в ячейке 2". Итак, гипотезы должны быть независимы или ортогональны (термин ортогональность впервые использован в работе Yates, 1933).
Независимые гипотезы при повторных измерениях. Общий алгоритм, реализованный в модуле Дисперсионный анализ, будет пытаться для каждого эффекта генерировать независимые (ортогональные) контрасты (см. раздел Технические замечания руководства пользователя). Для фактора повторных измерений эти контрасты задают множество гипотез относительно разностеймежду уровнями рассматриваемого фактора. Однако если эти разности коррелированы внутри групп, то результирующие контрасты не являются больше независимыми. Например, в обучении, где обучающиеся измеряются три раза за один семестр, может случиться, что изменения между 1 и 2 измерением отрицательно коррелируют с изменением между 2 и 3 измерениями субъектов. Те, кто большую часть материала освоил между 1 и 2 измерениями, осваивают меньшую часть в течение того времени, которое прошло между 2 и 3 измерением. В действительности, для большинства случаев, где дисперсионный анализ используются при повторных измерениях, можно предположить, что изменения по уровням коррелированы по субъектам. Однако когда это происходит, предположение о сложной симметрии и сферичности не выполняются и независимые контрасты не могут быть вычислены.
Влияние нарушений и способы их исправления. Когда предположения о сложной симметрии или о сферичности не выполняются, дисперсионный анализ может выдать ошибочные результаты. До того, как были достаточно разработаны многомерные процедуры, было предложено несколько предположений для компенсации нарушений этих предположений. (См., например, работы Greenhouse & Geisser, 1959 и Huynh & Feldt, 1970). Эти методы до сих пор широко используются (поэтому они представлены в модуле Дисперсионный анализ).
Подход многомерного дисперсионного анализа к повторным измерениям. В целом проблемы сложной симметрии и сферичности относятся к тому факту, что множества контрастов, включенных в исследование эффектов факторов повторных измерений (с числом уровней больше двух) не независимы друг от друга. Однако им не обязательно быть независимыми, если используется многомерный критерий для одновременной проверки статистического значимости двух или более контрастов фактора повторных измерений. Это является причиной того, что методы многомерного дисперсионного анализа стали чаще использоваться для проверки значимости факторов одномерных повторных измерений с более чем 2 уровнями. Этот подход широко распространен, так как он, в общем случае, не требует предположения о сложной симметрии и предположения о сферичности.
Случаи, в которых подход многомерного дисперсионного анализа не может быть использован. Существуют примеры (планы), когда подход многомерного дисперсионного анализа не может быть применен. Обычно это случаи, когда имеется небольшое количество субъектов в плане и много уровней в факторе повторных измерений. Тогда для проведения многомерного анализа может быть слишком мало наблюдений. Например, если имеется 12 субъектов, p = 4 фактора повторных измерений, и каждый фактор имеет k = 3 уровней. Тогда взаимодействие 4-х факторов будет "расходовать" (k-1)p = 24 = 16 степеней свободы. Однако имеется лишь 12 субъектов, следовательно, в этом примере многомерный тест не может быть проведен. МодульДисперсионный анализ самостоятельно обнаружит эти наблюдения и вычислит только одномерные критерии.
Различия в одномерных и многомерных результатах. Если исследование включает большое количество повторных измерений, могут возникнуть случаи, когда одномерный подход дисперсионного анализа к повторным измерениям дает результаты, сильно отличающиеся от тех, которые были получены при многомерном подходе. Это означает, что разности между уровнями соответствующих повторных измерений коррелированы по субъектам. Иногда этот факт представляет некоторый самостоятельный интерес.
Методы дисперсионного анализа
Методы дисперсионного анализа обсуждаются в нескольких разделах этого учебника. Хотя многие из доступных статистических методов описываются одновременно в нескольких главах, каждый из них наиболее удобен при работе в определенной области приложений.
Диспресионный анализ: Эта глава включает обзор полнофакторных планов, планов с повторными измерениями, планов многомерного дисперсионного и ковариационного анализа (MANOVA), планов с балансированной вложенностью (планы бывают не сбалансированными, т.е. имеющими различные размеры выборок n при некоторых испытаниях), а также описание оцениванияспланированных и апостериорных сравнений и мн. др.
Компоненты дисперсии и смешанная модель ANCOVA: Эта глава включает обсуждение экспериментов со случайными эффектами (смешанная модель дисперсионного анализ), оцениваниекомпонент дисперсии для случайных эффектов, планов с большими главными эффектами (например, с факторами, имеющими более 100 уровней) с/без случайных эффектов, а также в случае планов с большим числом факторов, когда необходимо оценить все взаимодействия.
Планирование эксперимента: Эта глава включает обсуждение стандартных экспериментальных планов, используемых в промышленных/производственных приложениях, включая 2**(k-p) и3**(k-p) планы, центральные композиционные и нефакторные планы, планы для смесей, D- и A-оптимальные планы, а также планы для произвольных ограниченных областей значений экспериментальных данных.
Анализ повторяемости и воспроизводимости (в главе Анализ процессов): Этот раздел главы Анализ процессов включает обсуждение планов специального вида, используемых для оценивания надежности и точности измерительных устройств; Эти планы обычно включают два или три случайных фактора и набор специализированных статистик, позволяющих оценить качество измерительной системы (обычно в промышленных/производственных приложениях).
Таблицы группировки (в главе Основные статистики и таблицы): Эта глава включает обсуждение экспериментов, одного (многоуровневого) или нескольких (любых) факторов в случаях, когда не требуется проведение полного дисперсионного анализа.
В начало |
Надеюсь, эта статья про дисперсионный анализ, была вам полезна, счастья и удачи в ваших начинаниях! Надеюсь, что теперь ты понял что такое дисперсионный анализ и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Теория вероятностей. Математическая статистика и Стохастический анализ
Часть 1 Дисперсионный анализ
Часть 2 - Дисперсионный анализ
Часть 3 Вау!! 😲 Ты еще не читал? Это зря! - Дисперсионный анализ
Комментарии
Оставить комментарий
Теория вероятностей. Математическая статистика и Стохастический анализ
Термины: Теория вероятностей. Математическая статистика и Стохастический анализ