Лекция
Привет, сегодня поговорим про уравнение прямой, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое уравнение прямой, уравнение прямой на плоскости, взаимное расположение двух прямых , настоятельно рекомендую прочитать все из категории Планометрия.
Определение. Любая прямая на плоскости может быть задана уравнением первого порядка
Ах + Ву + С = 0,
причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:
• C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат
• А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох
• В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу
• В = С = 0, А ≠0 – прямая совпадает с осью Оу
• А = С = 0, В ≠0 – прямая совпадает с осью Ох
Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.
Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой , заданной уравнением Ах + Ву + С = 0.
Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).
Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно, С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.
Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2, z 2 ), тогда уравнение прямой, проходящей через эти точки:
Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.На плоскости записанное выше уравнение прямой упрощается:
уравнение прямой на плоскости " src="/th/25/blogs/id3383/3fb16a65c9dc27f5d6b36c51436c8dc2.png" style="height:56px; width:188px" />
если х 1 ≠ х2 и х = х 1 , если х 1 = х2 .
Дробь = k называется угловым коэффициентом прямой.
Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).
Решение. Применяя записанную выше формулу, получаем:
Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:
и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k .
По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.
Определение. Об этом говорит сайт https://intellect.icu . Каждый ненулевой вектор ( α1 , α2 ), компоненты которого удовлетворяют условию А α1 + В α2 = 0 называется направляющим вектором прямой
Ах + Ву + С = 0.
Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).
Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям:
1 * A + (-1) * B = 0, т.е. А = В.
Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0. при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:
х + у - 3 = 0
Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим: или
, где
Геометрический смысл коэффициентов в том, что коэффициент аявляется координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.
Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.
С = 1, , а = -1, b = 1.
Если обе части уравнения Ах + Ву + С = 0 умножить на число , которое называется нормирующем множителем , то получим
xcosφ + ysinφ - p = 0 –
нормальное уравнение прямой. Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0. р – длина перпендикуляра, опущенного из начала координат на прямую, а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.
Пример. Дано общее уравнение прямой 12х – 5у – 65 = 0. Требуется написать различные типы уравнений этой прямой.
уравнение этой прямой в отрезках:
уравнение этой прямой с угловым коэффициентом: (делим на 5)
нормальное уравнение прямой:
; cos φ = 12/13; sin φ= -5/13; p = 5.
Cледует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые, параллельные осям или проходящие через начало координат.
Пример. Прямая отсекает на координатных осях равные положительные отрезки. Составить уравнение прямой, если площадь треугольника, образованного этими отрезками равна 8 см 2 .
Решение. Уравнение прямой имеет вид: , ab /2 = 8; ab=16; a=4, a=-4. a = -4 < 0 не подходит по условию задачи. Итого: или х + у – 4 = 0.
Пример. Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат.
Решение. Уравнение прямой имеет вид: , где х 1 = у 1 = 0; x2 = -2; y2 = -3.
Определение. Если заданы две прямые y = k1 x + b1 , y = k 2x + b2 , то острый угол между этими прямыми будет определяться как
.
Две прямые параллельны, если k1 = k2 . Две прямые перпендикулярны, если k1 = -1/ k2 .
Теорема. Прямые Ах + Ву + С = 0 и А 1 х + В1 у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = λА, В1 = λВ. Если еще и С1 = λС, то прямые совпадают. Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.
Определение. Прямая, проходящая через точку М1 (х1 , у1 ) и перпендикулярная к прямой у = kx + b представляется уравнением:
Теорема. Если задана точка М(х0 , у0 ), то расстояние до прямой Ах + Ву + С =0 определяется как
.
Доказательство. Пусть точка М 1(х 1, у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М1 :
(1)
Координаты x1 и у1 могут быть найдены как решение системы уравнений:
Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой. Если преобразовать первое уравнение системы к виду:
A(x – x 0 ) + B(y – y0 ) + Ax0 + By0 + C = 0,
то, решая, получим:
Подставляя эти выражения в уравнение (1), находим:
Теорема доказана.
Пример. Определить угол между прямыми: y = -3 x + 7; y = 2 x + 1.
k 1 = -3; k 2 = 2; tgφ = ; φ= π /4.
Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.
Решение. Находим: k 1 = 3/5, k2 = -5/3, k 1* k 2 = -1, следовательно, прямые перпендикулярны.
Пример. Даны вершины треугольника А(0; 1), B (6; 5), C (12; -1). Найти уравнение высоты, проведенной из вершины С.
Решение. Находим уравнение стороны АВ: ; 4 x = 6 y – 6;
2 x – 3 y + 3 = 0;
Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b . k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .
Ответ: 3 x + 2 y – 34 = 0.
Я что-то не договорил про уравнение прямой, тогда сделай замечание в комментариях Надеюсь, что теперь ты понял что такое уравнение прямой, уравнение прямой на плоскости, взаимное расположение двух прямых и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Планометрия
Комментарии
Оставить комментарий
Планометрия
Термины: Планометрия