Лекция
Привет, сегодня поговорим про матрица инцидентности, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое матрица инцидентности, смежности , настоятельно рекомендую прочитать все из категории Дискретная математика. Теория множеств . Теория графов . Комбинаторика..
матрица инцидентности — одна из форм представления графа, в которой указываются связи между инцидентными элементами графа (ребро(дуга) и вершина). Столбцы матрицы соответствуют ребрам, строки — вершинам. Ненулевое значение в ячейке матрицы указывает связь между вершиной и ребром (их инцидентность).
В случае ориентированного графа каждой дуге <x,y> ставится в соответствие "-1" в строке вершины x и столбце дуги <x,y> и "1" в строке вершины y и столбце дуги <x,y>; если связи между вершиной и ребром нет, то в соответствующую ячейку ставится "0".
Граф | Матрица инцидентности |
---|---|
Матрица смежности — один из способов представления графа в виде матрицы.
Матрица смежности графа G с конечным числом вершин n (пронумерованных числами от 1 до n) — это квадратная матрица A размера n, в которой значение элементаaij равно числу ребер из i-й вершины графа в j-ю вершину.
Иногда, особенно в случае неориентированного графа, петля (ребро из i-й вершины в саму себя) считается за два ребра, то есть значение диагонального элемента aii в этом случае равно удвоенному числу петель вокруг i-й вершины.
Матрица смежности простого графа (не содержащего петель и кратных ребер) является бинарной матрицей и содержит нули на главной диагонали.
Граф | Матрица смежности |
---|---|
Матрица смежности неориентированного графа симметрична, а значит обладает действительными собственными значениями и ортогональным базисом из собственных векторов. Набор ее собственных значений называется спектром графа, и является основным предметом изучения спектральной теории графов.
Два графа G1 и G2 с матрицами смежности A1 и A2 являются изоморфными если и только если существует перестановочная матрица P, такая что
Из этого следует, что матрицы A1 и A2 подобны, а значит имеют равные наборы собственных значений, определители и характеристические многочлены. Однако обратное утверждение не всегда верно — два графа с подобными матрицами смежности могут быть неизоморфны.
Если A — матрица смежности графа G, то матрица Am обладает следующим свойством: элемент в i-й строке, j-м столбце равен числу путей из i-й вершины в j-ю, состоящих из ровно m ребер.
Матрица смежности и списки смежности являются основными структурами данных, которые используются для представления графов в компьютерных программах
Использование матрицы смежности предпочтительно только в случае неразреженных графов, с большим числом ребер, так как она требует хранения по одному биту данных для каждого элемента. Если граф разрежен, то большая часть памяти напрасно будет тратиться на хранение нулей, зато в случае неразреженных графов матрица смежности достаточно компактно представляет граф в памяти, используя примерно бит памяти, что может быть на порядок лучше списков смежности.
В алгоритмах, работающих со взвешенными графами (например, в алгоритме Флойда-Уоршелла), элементы матрицы смежности вместо чисел 0 и 1, указывающих на присутствие или отсутствие ребра, часто содержат веса самих ребер. При этом на место отсутствующих ребер ставят некоторое специальное граничное значение (англ. sentinel), зависящее от решаемой задачи, обычно 0 или .
На этом все! Теперь вы знаете все про матрица инцидентности, Помните, что это теперь будет проще использовать на практике. Надеюсь, что теперь ты понял что такое матрица инцидентности, смежности и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Дискретная математика. Теория множеств . Теория графов . Комбинаторика.
Из статьи мы узнали кратко, но содержательно про матрица инцидентности
Комментарии
Оставить комментарий
Дискретная математика. Теория множеств . Теория графов . Комбинаторика.
Термины: Дискретная математика. Теория множеств . Теория графов . Комбинаторика.