Лекция
Привет, Вы узнаете о том , что такое алгоритм брона-кербоша, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое алгоритм брона-кербоша , настоятельно рекомендую прочитать все из категории Дискретная математика. Теория множеств . Теория графов . Комбинаторика..
Алгоритм Брона — Кербоша — метод ветвей и границ для поиска всех клик (а также максимальных по включению независимых множеств вершин) неориентированного графа. Разработан голландскими математиками Броном и Кербошем в 1973 году и до сих пор является одним из самых эффективных алгоритмов поиска клик.
Алгоритм использует тот факт, что всякая клика в графе является его максимальным по включению полным подграфом. Начиная с одиночной вершины (образующей полный подграф), алгоритм на каждом шаге пытается увеличить уже построенный полный подграф, добавляя в него вершины из множества кандидатов. Высокая скорость обеспечивается отсечением при переборе вариантов, которые заведомо не приведут к построению клики, для чего используется дополнительное множество, в которое помещаются вершины, которые уже были использованы для увеличения полного подграфа.
Алгоритм оперирует тремя множествами вершин графа:
Алгоритм является рекурсивной процедурой, применяемой к этим трем множествам.
ПРОЦЕДУРА extend (candidates, not): ПОКА candidates НЕ пусто И not НЕ содержит вершины, СОЕДИНЕННОЙ СО ВСЕМИ вершинами из candidates, ВЫПОЛНЯТЬ: 1 Выбираем вершину v из candidates и добавляем ее в compsub 2 Формируем new_candidates и new_not, удаляя из candidates и not вершины, не СОЕДИНЕННЫЕ с v 3 ЕСЛИ new_candidates и new_not пусты 4 ТО compsub – клика 5 ИНАЧЕ рекурсивно вызываем extend (new_candidates, new_not) 6 Удаляем v из compsub и candidates, и помещаем в not
Нетрудно видеть, что задача о клике и задача о независимом множестве по сути эквивалентны: каждая из них получается из другой, путем построения дополнения графа — такого графа, в котором есть все вершины исходного графа, причем в дополнении графа вершины соединены ребром тогда и только тогда, если они не были соединены в исходном графе.
Поэтому алгоритм Брона — Кербоша можно использовать для нахождения максимальных по включению независимых множеств вершин, если построить дополнение к исходному графу, либо изменив условие в основном цикле (условие остановки) и формирование новых множеств new_candidates и new_not:
Линейна относительно количества клик в графе. Об этом говорит сайт https://intellect.icu . Tomita, Tanaka и Haruhisa в 2006 показали, что в худшем случае алгоритм работает за O(3n/3), где n — количество вершин в графе.
Исследование, описанное в статье про алгоритм брона-кербоша, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое алгоритм брона-кербоша и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Дискретная математика. Теория множеств . Теория графов . Комбинаторика.
Из статьи мы узнали кратко, но содержательно про алгоритм брона-кербоша
Комментарии
Оставить комментарий
Дискретная математика. Теория множеств . Теория графов . Комбинаторика.
Термины: Дискретная математика. Теория множеств . Теория графов . Комбинаторика.