Лекция
Game: Perform tasks and rest cool.2 people play!
Play gameПривет, Вы узнаете о том , что такое сфера, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое сфера , настоятельно рекомендую прочитать все из категории Стереометрия.
Расстояние от точки сферы до ее центра называется радиусом сферы. Сфера радиуса 1 называется единичной сферой.
Сфера так же имеет объем и площадь поверхности.
Пожалуй, кроме определения, разница заключается в том, что в задачах никогда не находят объем сферы. Как правило, ищут объем шара. Это не значит, что у сферы нет объема. Это трехмерная фигура, поэтому объем у нее есть.
Еще одно отличие, которое можно считать более или менее значимым: секущая плоскость сферы: окружность, которая не имеет внутреннего пространства, но имеет длину. Секущая плоскость шара: круг, который имеет площадь и не имеет длины окружности.
Шаром принято называть тело, ограниченное сферой, т.е. шар и сфера – это разные геометрические тела. Однако оба слова « шар» и « сфера» происходят от одного и того же греческого слова « сфайра» - мяч. При этом слово « шар» образовалось от перехода согласных сф в ш. В XI книге «Начал» Евклид определяет шар как фигуру, описанную вращающимся около неподвижного диаметра полукругом. В древности сфера была в большом почете. Астрономические наблюдения над небесным сводом неизменно вызывали образ сферы. Сфера всегда широко применялось в различных областях науки и техники.
Сфера является поверхностью вращения, образованной при вращении полуокружности вокруг своего диаметра. Площадь сферы в градусной мере с учетом непостоянства значения размеров дуг составляет 41252,96 кв. градусов.
Game: Perform tasks and rest cool.2 people play!
Play gameОбъем цилиндра, объем вписанного в него шара, касающегося обоих его оснований, и объем конуса, с вершиной в центре одного основания цилиндра и с основанием, совпадающим с другим основанием цилиндра, находятся в соотношении 3 : 2 : 1 .
«Кубок Кеплера»: модель Солнечной системы из пяти правильных многогранников и их вписанных и описанных сфер.
Game: Perform tasks and rest cool.2 people play!
Play gameНебесные сферы со времен Древней Греции были частью более общей концепции гармонии сфер о музыкально-астрономическом устройстве мира, куда также входило понятие «музыка сфер». Эта концепция также существовала как минимум до средневековья. У одного из известнейших астрономов, Иоганна Кеплера, сфера занимала центральное место во всей его системе религиозно-мистических представлений, он писал: «Образ триединого бога есть сферическая поверхность, а именно: бог-отец в центре, бог-сын — на поверхности и святой дух — в симметричном отношении между центром и описанной вокруг него сферической поверхностью» . Одно из первых значительных сочинений Кеплера, «Тайна мироздания» (лат. Mysterium Cosmographicum), было посвящено параметрам небесных сфер, Кеплер считал, что он открыл замечательную связь между правильными многогранниками, которых только пять, и небесными сферами шести известных к тому времени планет (включая Землю), являвшимися, по Кеплеру, описанными и вписанными сферами этих многогранников. Представления о гармонии сфер сыграли большую роль при открытии Кеплером третьего закона движений небесных тел (во всяком случае, могут рассматриваться как стимул к поиску астрономических соотношений) . Однако у Кеплера небесные сферы являлись уже чисто математическими объектами, а не физически существующими телами. К тому времени Тихо Браге показал, что движение комет, в частности, Большой кометы 1577 года, несовместимо с существованием твердых небесных сфер . Как удобная математическая модель, осталась одна небесная сфера, с помощью которой астрономы по сей день представляют видимые положения звезд и планет.
Уравнение сферы в прямоугольной системе координат:
где — координаты центра сферы,
— ее радиус.
Параметрическое уравнение сферы с центром в точке :
где и
Гауссова кривизна сферы постоянна и равна 1/R².
Через четыре точки пространства может проходить единственная сфера с центром
Game: Perform tasks and rest cool.2 people play!
Play gameGame: Perform tasks and rest cool.2 people play!
Play gameРадиус данной сферы:
Площадь поверхности сферы
Объем шара, ограниченного сферой
Площадь сегмента сферы высоты
.
Окружность, лежащая на сфере, центр которой совпадает с центром сферы, называется большим кругом (большой окружностью) сферы. Об этом говорит сайт https://intellect.icu . Большие окружности являются геодезическими линиями на сфере; любые две из них пересекаются в двух точках. Иными словами, большие круги сферы являются аналогами прямых на плоскости, расстояние между точками на сфере — длина дуги проходящего через них большого круга. Углу же между прямыми на плоскости соответствует двугранный угол между плоскостями больших кругов. Многие теоремы геометрии на плоскости справедливы и в сферической геометрии, существуют аналоги теоремы синусов, теоремы косинусов для сферических треугольников. В то же время, существует немало отличий, например, в сферическом треугольнике сумма углов всегда больше 180 градусов, к трем признакам равенства треугольников добавляется их равенство по трем углам, у сферического треугольника может быть два и даже три прямых угла — например, у сферического треугольника, образованного экватором и меридианами 0° и 90°.
Game: Perform tasks and rest cool.2 people play!
Play gameЕсли даны сферические координаты двух точек, то расстояние между ними можно найти так:
Однако, если угол задан не между осью Z и вектором на точку сферы, а между этим вектором и плоскостью XY (как это принято в земных координатах, заданных широтой и долготой), то формула будет такая:
В этом случае и
называются широтами, а
и
долготами.
В общем случае уравнение (n−1)-мерной сферы (в n-мерном евклидовом пространстве) имеет вид:
Game: Perform tasks and rest cool.2 people play!
Play gameгде — центр сферы, а
— радиус.
Пересечением двух n-мерных сфер является (n−1)-мерная сфера, лежащая на радикальной гиперплоскости этих сфер.
В n-мерном пространстве могут попарно касаться друг друга (в разных точках) не более n+1 сфер.
n-мерная инверсия переводит (n−1)-мерную сферу в (n−1)-мерную сферу или гиперплоскость.
С трехмерной сферой связана одна из задач тысячелетия — гипотеза Пуанкаре, в которой утверждается, что всякое односвязное компактное трехмерное многообразие без края гомеоморфно такой сфере. Эта гипотеза была доказана Г. Я. Перельманом в начале 2000-х годов на основе результатов Ричарда Гамильтона.
Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.
Сфера и плоскость могут:
1) пересекаться по окружности. Случай, когда расстояние от центра сферы до плоскости меньше радиуса сферы.
Тогда сечение сферы плоскостью есть окружность;
2) не пересекаться. Случай, когда расстояние от центра сферы до плоскости больше радиуса сферы.
Тогда сфера и плоскость не имеют общих точек.
3) и иметь только одну общую точку. Случай, когда расстояние от центра сферы до плоскости равно радиусу сферы.
Давайте более подробно остановимся на последнем случае, когда сфера и плоскость имеют только одну общую точку.
Определение:
Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.
Game: Perform tasks and rest cool.2 people play!
Play game
Исследование, описанное в статье про сфера, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое сфера и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Стереометрия
Комментарии
Оставить комментарий
Стереометрия
Термины: Стереометрия