Параллельность прямых a и b обозначается так: a∥b илиb∥a.
Teорема 1.
v 
1. так как прямые a и b параллельны, из определения следует, что через них можно провести плоскость α.
2. Чтобы доказать, что такая плоскость только одна, на прямой a обозначаем точки B и C, а на прямой b — точку A.
3. Так как через три точки, которые не лежат на одной прямой, можно провести только одну плоскость (2 аксиома), то α является единственной плоскостью, которой принадлежат прямые a и b.
Теорема 2. Через любую точку пространства вне данной прямой можно провести прямую, параллельную данной прямой, и притом только одну. 
Доказательство:
1. через данную прямую a и точку M, которая не лежит на прямой, проводится плоскость α.
2. Такая плоскость только одна (т. к. через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну).
3. А в плоскости α через точку M можно провести только одну прямую b, которая параллельна прямой a.
Теорема 3. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
(1 рис.)
(2 рис.)
Доказательство:
рассмотрим две параллельные прямые a и b и допустим, что прямая b пересекает плоскость α в точке M (1 рис.).
Из 1-й теоремы известно, что через параллельные прямые a и b можно провести только одну плоскость β.
Так как точка M находится на прямой b, то M также принадлежит плоскости β (2 рис.). Об этом говорит сайт https://intellect.icu . Если у плоскостей α и β есть общая точка M, то у этих плоскостей есть общая прямая c, которая является прямой пересечения этих плоскостей (4 аксиома).
Прямые a, b и c находятся в плоскости β.
Если в этой плоскости одна из параллельных прямых b пересекает прямую c, то вторая прямая a тоже пересекает c.
Точку пересечения прямых a и c обозначим за K.
Так как точка K находится на прямой c, то K находится в плоскости α и является единственной общей точкой прямой a и плоскости α.
Значит, прямая a пересекает плоскость α в точке K.
Теорема 4. Две прямые, параллельные третьей прямой, параллельны.
Дано: a∥c и b∥c.
Доказать: a∥b.
Доказательство:
выберем точку M на прямой b.
Через точку M и прямую a, которая не содержит эту точку, можно провести только одну плоскость α (через прямую и не лежащую на ней точку можно провести только одну плоскость).
Возможны два случая:
1) прямая b пересекает плоскость α; или 2) прямая b находится в плоскости α.
Пусть прямая b пересекает плоскость α.
Значит, прямая c, которая параллельна прямой b, тоже пересекает плоскость α. Так как a∥c, то получается, что a тоже пересекает эту плоскость. Но прямая a не может одновременно пересекать плоскость α и находиться в плоскости α. Получаем противоречие, следовательно, предположение, что прямая b пересекает плоскость α, является неверным.
Значит, прямая b находится в плоскости α.
Теперь нужно доказать, что прямые a и b параллельны.
Пусть у прямых a и b есть общая точка L.
Это означает, что через точку L проведены две прямые a и b, которые параллельны прямой c. Но по второй теореме это невозможно. Поэтому предположение неверное, и прямые a и b не имеют общих точек.
Так как прямые a и b находятся в одной плоскости α, и у них нет общих точек, то они параллельны.
Все множество прямых в пространстве, которые параллельны данной прямой, называется пучком параллельных прямых.
Выводы:
Пример:
одна сторона параллелограмма пересекает плоскость. Докажите, что прямая, которая содержит противоположную сторону параллелограмма, тоже пересекает эту плоскость.
Допустим, что у параллелограмма ABCD сторона AD пересекает плоскость α в точке K.
Так как противоположные стороны параллелограмма параллельны, то, согласно третьей теореме, прямая, которая содержит сторону CD, тоже пересекает плоскость α.
2) прямая и плоскость имеют только одну общую точку (прямая и плоскость пересекаются);
3) прямая и плоскость не имеют общих точек.
Мы пришли к противоречию. Так как согласно данной информации a∥b, они не могут быть скрещивающимися. Значит, прямая a должна быть параллельна плоскости α.
Комментарии
Оставить комментарий
Стереометрия
Термины: Стереометрия