Лекция
Привет, Вы узнаете о том , что такое вейвлет, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое вейвлет, вейвлет-преобразование , настоятельно рекомендую прочитать все из категории Цифровая обработка изображений.
вейвлет (англ. wavelet — небольшая волна, рябь; также всплеск, реже — вэйвлет) — математическая функция, позволяющая анализировать различные частотные компоненты данных. График функции выглядит как волнообразные колебания с амплитудой, уменьшающейся до нуля вдали от начала координат. Однако это частное определение — в общем случае анализ сигналов производится в плоскости вейвлет-коэффициентов (масштаб — время — уровень) (Scale-Time-Amplitude). Вейвлет-коэффициенты определяются интегральным преобразованием сигнала. Полученные вейвлет-спектрограммы принципиально отличаются от обычных спектров Фурье тем, что дают четкую привязку спектра различных особенностей сигналов ко времени.
В начале развития области употреблялся термин «во́лночка» — калька с английского. Позднее применялся предложенный К. И. Осколковым термин «вcплеск» . Английское слово «wavelet» означает в переводе «маленькая волна», или «волны, идущие друг за другом». И тот и другой перевод подходит к определению вейвлетов. Вейвлеты — это семейство функций, которые локальны во времени и по частоте («маленькие»), и в которых все функции получаются из одной посредством ее сдвигов и растяжений по оси времени (так что они «идут друг за другом»).
Разработка вейвлетов связана с несколькими отдельными нитями рассуждений, начавшимися с работ Альфреда Хаара в начале XX века. Весомый вклад в теорию вейвлетов внесли Гуппилауд, Гроссман и Морле, сформулировавшие то, что сейчас известно как непрерывное вейвлет-преобразование (НВП) (1982), Жан Олаф-Стромберг с ранними работами по дискретным вейвлетам (1983), Добеши, разработавшая ортогональные вейвлеты с компактным носителем (1988), Малла, предложивший кратномасштабный метод (1989), Натали Делпрат, создавшая временно-частотную интерпретацию CWT (1991), Ньюланд, разработавший гармоническое вейвлет-преобразование, и многие другие.
В конце XX века появляются инструментальные средства по вейвлетам в системах компьютерной математики Mathcad, MATLAB и Mathematica (см. их описание в книге Дьяконова В. П.). Вейвлеты стали широко применяться в технике обработки сигналов и изображений, в частности, для их компрессии и очистки от шума. Были созданы интегральные микросхемы для вейвлет-обработки сигналов и изображений.
В декабре 2000 года появился новый международный стандарт сжатия изображений JPEG 2000, в котором сжатие осуществляется при помощи разложения изображения по базису вейвлетов.
В 2002—2003 годах появился ICER — формат сжатия изображений на основе вейвлет-преобразований, используемый для фотоснимков, получаемых в дальнем космосе, в частности, в проектах Mars Exploration Rover .
Существует несколько подходов к определению вейвлета: через масштабный фильтр, масштабную функцию, вейвлет-функцию. Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Вейвлетные функции могут быть симметричными, асимметричными и несимметричными, с компактной областью определения и не имеющие таковой, а также иметь различную степень гладкости.
Примеры вейвлетов:
Связана с несколькими другими методиками.
Все вейвлет-преобразования могут рассматриваться как разновидность временно-частотного представления и, следовательно, относятся к предмету гармонического анализа.
Дискретное вейвлет-преобразование может рассматриваться как разновидность фильтра конечного импульсного отклика.
Сопоставление волна (wave) — вейвлет, ЛЧМ-сигнал (chirp) — чирплет
Вейвлет-преобразование (англ. Wavelet transform) — интегральное преобразование, которое представляет собой свертку вейвлет-функции с сигналом. Вейвлет-преобразование переводит сигнал из временного представления в частотно-временное.
Способ преобразования функции (или сигнала) в форму, которая или делает некоторые величины исходного сигнала более поддающимися изучению, или позволяет сжать исходный набор данных. Вейвлетное преобразование сигналов является обобщением спектрального анализа. Термин (англ. wavelet) в переводе с английского означает «маленькая волна». Вейвлеты — это обобщенное название математических функций определенной формы, которые локальны во времени и по частоте и в которых все функции получаются из одной базовой, изменяя ее (сдвигая, растягивая).
Рассматривают функцию (взятую будучи функцией от времени) в терминах колебаний, локализованных по времени и частоте.
Используются в обработке сигналов, нередко заменяя обычное преобразование Фурье во многих областях физики, включая молекулярную динамику, вычисления ab initio, астрофизику, локализацию матрицы плотности, сейсмическую геофизику, оптику, турбулентность, квантовую механику, обработку изображений, анализы кровяного давления, пульса и ЭКГ, анализ ДНК, исследования белков, исследования климата, общую обработку сигналов, распознавание речи, компьютерную графику, мультифрактальный анализ и другие.
Вейвлет-анализ применяется для анализа нестационарных медицинских сигналов, в том числе в электрогастроэнтерографии.
Вейвлет-преобразования обычно делят на дискретное вейвлет-преобразование (ДВП) и непрерывное вейвлет-преобразование (НВП).
Вейвлеты, образующие ДВП, могут рассматриваться как разновидность фильтра конечного импульсного отклика.
Применение: обычно используется для кодирования сигналов (инженерное дело, компьютерные науки).
Вейвлеты, образующие НВП, подчиняются принципу неопределенности Гейзенберга и соответственно базис дискретного вейвлета также может рассматриваться в контексте других форм принципа неопределенности.
Применение: для анализа сигналов (научные исследования).
Для осуществления вейвлет-преобразования вейвлет-функции должны удовлетворять следующим критериям :
1. Об этом говорит сайт https://intellect.icu . Вейвлет должен обладать конечной энергией:
2. Если фурье-преобразование для вейвлета , то есть
тогда должно выполняться следующее условие:
Это условие называется условием допустимости, и из него следует что вейвлет при нулевой частотной компоненте должен удовлетворять условию или, в другом случае, вейвлет должен иметь среднее равное нулю.
3. Дополнительный критерий предъявляется для комплексных вейвлетов, а именно, что для них Фурье-преобразование должно быть одновременно вещественным и должно убывать для отрицательных частот.
4. Локализация: вейвлет должен быть непрерывным, интегрируемым, иметь компактный носитель и быть локализованным как во времени (в пространстве), так и по частоте. Если вейвлет в пространстве сужается, то его средняя частота повышается, спектр вейвлета перемещается в область более высоких частот и расширяется. Этот процесс должен быть линейным — сужение вейвлета вдвое должно повышать его среднюю частоту и ширину спектра также вдвое.
1. Линейность
2. Инвариантность относительно сдвига
Сдвиг сигнала во времени на t0 приводит к сдвигу вейвлет-спектра также на t0.
3. Инвариантность относительно масштабирования
Растяжение (сжатие) сигнала приводит к сжатию (растяжению) вейвлет-спектра сигнала.
4. Дифференцирование
Отсюда следует, что безразлично, дифференцировать ли функцию или анализирующий вейвлет. Если анализирующий вейвлет задан формулой, то это может быть очень полезным для анализа сигналов. Это свойство особенно полезно, если сигнал задан дискретным рядом.
Вейвлет-преобразование для непрерывного сигнала относительно вейвлет функции определяется следующим образом :
где означает комплексное сопряжение для , параметр соответствует временному сдвигу, и называется параметром положения, параметр задает масштабирование и называется параметром растяжения.
— весовая функция.
Мы можем определить нормированную функцию следующим образом
что означает временной сдвиг на b и масштабирование по времени на a. Тогда формула вейлет-преобразования изменится на
Исходный сигнал может быть восстановлен по формуле обратного преобразования
В дискретном случае, параметры масштабирования a и сдвига b представлены дискретными величинами:
Тогда анализирующий вейвлет имеет следующий вид:
где m и n — целые числа.
В таком случае для непрерывного сигнала дискретное вейвлет-преобразование и его обратное преобразование запишутся следующими формулами:
Величины также известны как вейвлет-коэффициенты.
где — постоянная нормировки.
Вейвлет-преобразование широко используется для анализа сигналов. Помимо этого, оно находит большое применение в области сжатия данных. В дискретном вейвлет-преобразовании наиболее значимая информация в сигнале содержится при высоких амплитудах, а менее полезная — при низких. Сжатие данных может быть получено за счет отбрасывания низких амплитуд. Вейвлет-преобразование позволяет получить высокое соотношение сжатия в сочетании с хорошим качеством восстановленного сигнала. Вейвлет-преобразование было выбрано для стандартов сжатия изображений JPEG2000 и ICER. Однако, при малых сжатиях вейвлет-преобразование уступает по качеству в сравнении с оконным Фурье-преобразованием, которое лежит в основе стандарта JPEG.
Выбор конкретного вида и типа вейвлетов во многом зависит от анализируемых сигналов и задач анализа. Для получения оптимальных алгоритмов преобразования разработаны определенные критерии, но их еще нельзя считать окончательными, так как они являются внутренними по отношению к самим алгоритмам преобразования и, как правило, не учитывают внешних критериев, связанных с сигналами и целями их преобразований. Отсюда следует, что при практическом использовании вейвлетов необходимо уделять достаточное внимание проверке их работоспособности и эффективности для поставленных целей по сравнению с известными методами обработки и анализа.
Достоинства вейвлет-преобразования:
Недостатки вейвлет-преобразования :
Исследование, описанное в статье про вейвлет, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое вейвлет, вейвлет-преобразование и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Цифровая обработка изображений
Комментарии
Оставить комментарий
Цифровая обработка изображений
Термины: Цифровая обработка изображений