Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) кратко

Лекция



Привет, Вы узнаете о том , что такое 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга), Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) , настоятельно рекомендую прочитать все из категории Функциональный анализ.

Часто вместо уравнений (3) приходится рассматривать уравнения

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) (8)

где 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга), х искомый, у известный элемент, а l – некоторый числовой параметр. Уравнение (8) можно также записать в виде

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) (8*)

Одновременно с уравнением (8) целесообразно рассматривать уравнение

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) (9)

которое, называют однородным уравнением, соответствующим уравнению (8). Уравнение же (8) называют тогда неоднород­ным. Ясно, что однородное уравнение всегда имеет нулевое решение x = 0.

Пусть оператор 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)для данного значения пара­метра 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) имеет обратный оператор 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) этот оператор называют разрешающим оператором или резольвентой для уравнения (8) или оператора А и обо­значают 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга). Тогда уравнение (8) при любом 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) имеет решение и притом только одно. Однородное уравнение (9) имеет в этом случае лишь нулевое решение. Такие значения параметра l называются регулярными значениями оператора А или уравнения (8). Множество значений параметра l, не являющиеся регулярными, называются спектром оператора А. Может случиться, что однородное уравнение (9), кроме нулевого, имеет еще одно или несколько ре­шений, отличных от нуля. Такие значения параметра, при которых это происходит, называются характеристическими числами или собственными значе­ниями оператора А. Так как в этом случае решение урав­нения (9), являющегося частным случаем уравнения (8), не однозначно, то собственные значения принадлежат спектру. Однако могут существовать точки спектра, не являющиеся собственными значениями.

В 7 главе (теорема 7) рассматривался вопрос обратимости оператора 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга). В этом случае обратный оператор не является, строго говоря, резольвентой оператора А. Однако с помощью этого оператора резольвенту можно по­лучить без труда. В самом деле, преобразуем оператор 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) следующим образом:

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)

где 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) Если теперь 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)то 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)и поэтому существует 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга). Но тогда 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) т.е. 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) Таким образом, резольвента представима в виде сходящегося в области 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)ряда

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) =

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)

Пример 1. Рассмотрим в пространстве С [0, 1] опе­ратор умножения на независимое переменное 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)Уравнение (8) принимает в этом случае

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) (10)

и решение x(t) этого уравнения есть функция, тождественно ему удовлетворяющая. Об этом говорит сайт https://intellect.icu . Если 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) лежит вне отрезка [0, 1], то уравнение (10) имеет при любом у (t) единственное непрерывное решение

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)

откуда следует, что все такие значения параметра 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) являются регулярными, и резольвента есть оператор умножения на 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)

Все значения параметра, принадлежащие отрезку [0, 1], являются точками спектра. В самом деле, пусть 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга). Возьмем в качестве y(t) какую-нибудь функцию, не обращающуюся в нуль в точке 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)Для такой функции равенство 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) не может тождественно удовлетворяться ни при какой непрерывной на отрезке [0, 1] функции х (t), ибо в точке 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)левая часть его равна нулю, в то время как правая отлична от нуля. Следовательно, при 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) уравнение (10) не имеет решения для произвольной правой части, что и доказывает принадлежность 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) спектру оператора А, Вместе с тем ни одна точка спектра не является собственным значением, так как решение однородного уравнения 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) при любом t, отличном от 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга), а следовательно, в силу непрерывности и при 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) обращается в нуль, т.е. тождественно равно нулю.

Пример 2. Положим Х = Y = Rn и пусть оператор А задается квадратной матрицей 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) Уравнение (4) примет для 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) вид

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) (11)

Это есть система 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) линейных неоднородных алгебраических уравнений. Если определитель системы

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)

отличен от нуля, т. е. если 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) не есть корень уравнения 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга), то система уравнений (11) имеет при любых правых частях единственное решение, и следовательно, все такие значения параметра l регулярны. Корни уравнения D(l) = 0 образуют спектр, так как при таких l система (11) в общем случае не­разрешима. Однако при этих значениях параметра 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) однород­ная система

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)

имеет нетривиальное решение (т. е. отличное от нулевого), и, следовательно, любая точка спектра есть собственное зна­чение.

В приведенных примерах спектр оператора либо не со­держал, ни одного собственного значения, либо состоял только, из собственных значений. Имеются примеры, где спектр оператора содержит как собственные значения, так и точки, не являющиеся собственными значениями.

Лемма 5. Собственные векторы симметрического оператора, отвечающие различным собственным значениям, взаимно ортогональны.

Доказательство. Действительно, пусть имеют место равенства

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) и 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга).

Умножим первое равенство скалярно на 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга), второе на 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)и вычитая второе из первого, получим

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)

Левая часть равенства равна нулю вследствие симметрии оператора А. Так как 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга), то 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) Лемма 5 доказана.

Лемма 6. У вполне непрерывного оператора А всякая ортогональная нормированная система собственных векторов с собственными значениями, превосходящими по модулю положительное значение d, конечна.

Доказательство. Допустим, что нашлась бесконечная система 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) таких собственных векторов. Каждый из них оператором 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) переводится в себя самого с числовым множителем, по модулю большим числа d. Пусть 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) и 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)- какие-то два из этих собственных векторов:

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)

Имеем

4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)

Это означает, что расстояние между векторами, полученными после воздействия оператора 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) на вектора системы 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга), заведомо будут превосходить 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) Но из совокупности таких векторов нельзя выбрать никакой сходящейся последовательности, что противоречит полной непрерывности оператора 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга). Лемма 6 доказана.

Следствие. Существует только конечное число взаимно ортогональных векторов с данным собственным значением 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга)иными словами, каждое собственное подпространство, отвечающее ненулевому собственному значению( т.е. совокупность всех собственных векторов оператора А с фиксированным собственным значением l. Это множество очевидно, есть (замкнутое) подпространство в Н) вполне непрерывного симметричного оператора 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) конечномерно.

Исследование, описанное в статье про 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга), подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое 4. Резольвента и спектр оператора. Линейная независимость собственных векторов. Спектр вполне непрерывного оператора (конечномерность собственного подпространства, конечное число собственных значений вне круга) и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Функциональный анализ

Из статьи мы узнали кратко, но содержательно про
создано: 2020-09-19
обновлено: 2021-03-13
29



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Функциональный анализ

Термины: Функциональный анализ