Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Классификация систем автоматического управления

Лекция



Привет, Вы узнаете о том , что такое интеллектуальные сау, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое интеллектуальные сау, классификация сау , настоятельно рекомендую прочитать все из категории Математические основы теории автоматического управления.

Классификация систем автоматического управления (САУ)

По характеру управления:

  • системы управления
  • системы регулирования

По характеру действия:

  • системы непрерывного действия
  • системы дискретного действия
  • системы релейного действия

По степени использования информации о состоянии объекта управления:

  • управление с ОС
  • управление без ОС

По степени использования информации о параметрах и структуре объекта управления:

  • адаптивный
  • неадаптивный
  • поисковый
  • беспоисковый
  • с идентификацией
  • с переменной структурой

По степени преобразования координат в САУ:

  • детерминированный
  • стохастический (со случайными воздействиями)

По виду математической модели преобразования координат:

  • линейные
  • нелинейные (релейные, логические и др.)

По виду управляющих воздействий:

  • аналоговые
  • дискретные (прерывные, импульсные, цифровые)

По степени участия человека:

  • ручные
  • автоматические
  • автоматизированные (человек в управлении)

По закону изменения выходной переменной:

  • стабилизирующая: предписанное значение выходной переменной является неизменным.
  • программная: выходная переменная изменяется по определенной, заранее заданной программе.
  • следящая: предписанное значение выходной переменной зависит от значения неизвестной заранее переменной на входе автоматической системы.

По количеству управляемых и регулируемых переменных:

  • одномерные: если объект имеет только одну управляемую величину;
  • многомерные: если объект имеет относительно большое число управляемых величин и соответствующие им число управляющих воздействий.

По степени самонастройки, адаптации, оптимизации и интеллектуальности:

  • экстремальные
  • самонастраивающиеся
  • интеллектуальные

По воздействию чувствительного (измерительного) элемента на регулирующий орган:

  • системы прямого управления
  • системы косвенного управления

интеллектуальные сау

ИСАУ — это системы, которые позволяют проводить обучение, адаптацию или настройку за счет запоминания и анализа информации о поведении объекта, его СУ и внешних воздействий. Особенностью данных систем является наличие базы данных машины логического вывода, подсистемы объяснений и др.

База знаний — формализованные правила в виде логических формул, таблиц и т. п. ИСУ используется для управления плохо формализованными или сложными техническими объектами.

Класс ИСУ соответствует признакам:

  • Наличие взаимодействий СУ с реальным внешним миром с использованием информационных каналов связи.
  • Открытость системы — нужна для пополнения и приобретения знаний.
  • Наличие механизмов прогноза изменений среды функционирования системы.
  • Неточность информации об ОУ может быть компенсирована за счет повышения интеллектуализации алгоритма управления.
  • Сохранение функционирования при разрыве связи.

Если ИСУ удовлетворяет всем 5-ти признакам, то она интеллектуальна в «большом», иначе в «маленьком» смысле.

1. Классификация по виду математического описания

По виду математического описания (уравнений динамики и статики) системы автоматического управления (САУ) подразделяются на линейные и нелинейные системы (САУ или САР).

Каждый “подкласс” (линейных и нелинейных) подразделяется на еще ряд “подклассов”. Например, линейные САУ (САР) имеют различия по виду математического описания.
Поскольку в этом семестре будут рассматриваться динамические свойства только линейных систем автоматического управления (регулирования), то ниже приведем классификацию по виду математического описания для линейных САУ (САР):

1) Линейные системы автоматического управления, описываемые в переменных «вход-выход» обыкновенными дифференциальными уравнениями (ОДУ) с постоянными коэффициентами:

Классификация систем автоматического управления


где x(t) – входное воздействие; y(t) – выходное воздействие (регулируемая величина).

Если использовать операторную («компактную») форму записи линейного ОДУ, то уравнение (1.4.1) можно представить в следующем виде:

Классификация систем автоматического управления

где, p = d/dt — оператор дифференцирования; L(p), N(p) — соответствующие линейные дифференциальные операторы, которые равны:

Классификация систем автоматического управления

2) Линейные системы автоматического управления, описываемые линейными обыкновенными дифференциальными уравнениями (ОДУ) с переменными (во времени) коэффициентами:

Классификация систем автоматического управления

В общем случае такие системы можно отнести и к классу нелинейных САУ (САР).

3) Линейные системы автоматического управления, описываемые линейными разностными уравнениями:

Классификация систем автоматического управления

где f(…) – линейная функция аргументов; k = 1, 2, 3… — целые числа; Δt – интервал квантования (интервал дискретизации).

Уравнение (1.4.4) можно представить в «компактной» форме записи:

Классификация систем автоматического управления

Обычно такое описание линейных САУ (САР) используется в цифровых системах управления (с использованием ЭВМ).

4) Линейные системы автоматического управления с запаздыванием:

Классификация систем автоматического управления
где L(p), N(p) — линейные дифференциальные операторы; τ — время запаздывания или постоянная запаздывания.

Если операторы L(p) и N(p) вырождаются (L(p) = 1; N(p) = 1), то уравнение (1.4.6) соответствует математическому описанию динамики звена идеального запаздывания:

y(t)=x(t−τ);

а графическая иллюстрация его свойств привдена на рис. Об этом говорит сайт https://intellect.icu . 1.4.1

Классификация систем автоматического управления


Рис. 1.4.1 — Графики входа и выхода звена идеального запаздывания

5) Линейные системы автоматического управления, описываемые линейными дифференциальными уравнения в частных производных. Нередко такие САУ называют распределенными системами управления. ==> «Абстрактный» пример такого описания:

Классификация систем автоматического управления

Система уравнений (1.4.7) описывает динамику линейно распределенной САУ, т.е. регулируемая величина зависит не только от времени, но и от одной пространственной координаты.
Если система управления представляет собой «пространственный» объект, то ==>

Классификация систем автоматического управления

где y(t,r→) зависит от времени и пространственных координат, определяемых радиусом-вектором r→

6) САУ, описываемые системами ОДУ, или системами разностных уравнений, или системами уравнений в частных производных ==> и так далее…

Аналогичную классификацию можно предложить и для нелинейных САУ (САР)…

Для линейных систем выполеняются следующие требования:

  • линейность статической характеристики САУ;
  • линейность уравнения динамики, т.е. переменные в уравнение динамики входят только в линейной комбинации.

Статической характеристикой называется зависимость выхода от величины входного воздействия в установившемся режиме (когда все переходные процессы затухли).

Для систем, описываемых линейными обыкновенными дифференциальными уравнениями с постоянными коэффициентами статическая характеристика получается из уравнения динамики (1.4.1) приравниванием нулю всех нестационарных членов ==>

Классификация систем автоматического управления

На рис.1.4.2 представлены примеры линейной и нелинейных статических характеристик систем автоматического управления (регулирования).

Классификация систем автоматического управления


Рис. 1.4.2 — Примеры статических линейных и нелинейных характеристик

Нелинейность членов, содержащих производные по времени в уравнениях динамики, может возникнуть при использовании нелинейных математических операций ( Классификация систем автоматического управления и т.д.). Например, рассматривая уравнение динамики некоторой «абстрактной» САУ

Классификация систем автоматического управления

отметим, что в этом уравнении при линейной статической характеристики (y=kd⋅x) второе и третье слагаемые (динамические члены) в левой части уравнения — нелинейные, поэтому САУ, описываемая подобным уравнением, является нелинейной в динамическом плане.

2. Классификация по характеру передаваемых сигналов

По характеру передаваемых сигналов системы автоматического управления (или регулирования) подразделяются:

  • непрерывные системы (системы непрерывного действия);
  • релейные системы (системы релейного действия);
  • системы дискретного действия (импульсные и цифровые).

Системой непрерывного действия называется такая САУ, в каждом из звеньев которой непрерывному изменению входного сигнала во времени соответствует непрерывное изменение выходного сигнала, при этом закон изменения выходного сигнала может быть произвольным. Чтобы САУ была непрерывной, необходимо, чтобы статические характеристики всех звеньев были непрерывными.

Классификация систем автоматического управления


Рис. 1.4.3 — Пример непрерывной системы

Системой релейного действия называется САУ, в которой хотя бы в одном звене при непрерывном изменении входной величины выходная величина в некоторые моменты процесса управления меняется “скачком” в зависимости от величины входного сигнала. Статическая характеристика такого звена имеет точки разрыва или излома с разрывом.

Классификация систем автоматического управления


Рис. 1.4.4 — Примеры релейных статических характеристик

Системой дискретного действия называется система, в которой хотя бы в одном звене при непрерывном изменении входной величины выходная величина имеет вид отдельных импульсов, появляющиеся через некоторый промежуток времени.

Звено, преобразующее непрерывный сигнал в дискретный сигнал, называется импульсным. Подобный вид передаваемых сигналов имеет место в САУ с ЭВМ или контроллером.

Наиболее часто реализуются следующие методы (алгоритмы) преобразования непрерывного входного сигнала в импульсный выходной сигнал:

  • амплитудно-импульсная модуляция (АИМ);
  • широтно-импульсная модуляция (ШИМ).

На рис. 1.4.5 представлена графическая иллюстрация алгоритма амплитудно-импульсной модуляции (АИМ). В верхней части рис. представлена временная зависимость x(t) — сигнала на входе в импульсное звено. Выходной сигнал импульсного блока (звена) y(t) – последовательность прямоугольных импульсов, появляющихся с постоянным периодом квантования Δt (см. нижнюю часть рис.). Длительность импульсов – одинакова и равна Δ. Амплитуда импульса на выходе блока пропорциональна соответствующей величине непрерывного сигнала x(t) на входе данного блока.

Классификация систем автоматического управления


Рис. 1.4.5 — Реализация амплитудно-импульсной модуляции

Данный метод импульсной модуляции был весьма распространен в электронно-измерительной аппаратуре систем управления и защиты (СУЗ) ядерных энергетических установок (ЯЭУ) в 70-х…80-х годах прошлого столетия.

На рис. 1.4.6 представлена графическая иллюстрация алгоритма широтно-импульсной модуляции (ШИМ). В верхней части рис. 1.14 представлена временная зависимость x(t) – сигнала на входе в импульсное звено. Выходной сигнал импульсного блока (звена) y(t) – последовательность прямоугольных импульсов, появляющихся с постоянным периодом квантования Δt (см. нижнюю часть рис. 1.14). Амплитуда всех импульсов – одинакова. Длительность импульса Δt на выходе блока пропорциональна соответствующей величине непрерывного сигнала x(t) на входе импульсного блока.

Классификация систем автоматического управления


Рис. 1.4.6 — Реализация широтно-импульсной модуляции

Данный метод импульсной модуляции в настоящее время является наиболее распространенным в электронно-измерительной аппаратуре систем управления и защиты (СУЗ) ядерных энергетических установок (ЯЭУ) и САУ других технических систем.

Завершая данный подраздел, необходимо заметить, что если характерные постоянные времени в других звеньях САУ (САР) существенно больше Δt (на порядки), то импульсная система может считаться непрерывной системой автоматического управления (при использовании как АИМ, так и ШИМ).

3. Классификация по характеру управления

По характеру процессов управления системы автоматического управления подразделяются на следующие типы:

  • детерминированные САУ, в которых входному сигналу однозначно может быть поставлен в соответствие выходной сигнал (и наоборот);
  • стохастические САУ (статистические, вероятностные), в которых на данный входной сигнал САУ “отвечает” случайным (стохастическим) выходным сигналом.

Выходной стохастический сигнал характеризуется:

  • законом распределения;
  • математическим ожиданием (средним значением);
  • дисперсией (среднеквадратичным отклонением).


Стохастичность характера процесса управления обычно наблюдается в существенно нелинейных САР как с точки зрения статической характеристики, так и с точки зрения (даже в большей степени) нелинейности динамических членов в уравнениях динамики.

Классификация систем автоматического управления


Рис. 1.4.7 — Распределение выходной величины стохастической САУ

Кроме приведенных основных видов классификации систем управления, существуют и другие классификации. Например, классификация может проводиться по методу управления и основываться на взаимодействии с внешней средой и возможности адаптации САУ к изменению параметров окружающей среды. Системы делятся на два больших класса:

1) Обыкновенные (несамонастраивающиеся) СУ без адаптации; эти системы относятся к разряду простых, не изменяющих свою структуру в процессе управления. Они наиболее разработаны и широко применяются. Обыкновенные СУ подразделяются на три подкласса: разомкнутые, замкнутые и комбинированные системы управления.

2) Самонастраивающиеся (адаптивные) СУ. В этих системах при изменении внешних условий или характеристик объекта регулирования происходит автоматическое (заранее не заданное) изменение параметров управляющего устройства за счет изменения коэффициентов СУ, структуры СУ или даже введения новых элементов.

Другой пример классификации: по иерархическому признаку (одноуровневые, двухуровневые, многоуровневые).

Представленные результаты и исследования подтверждают, что применение искусственного интеллекта в области интеллектуальные сау имеет потенциал для революции в различных связанных с данной темой сферах. Надеюсь, что теперь ты понял что такое интеллектуальные сау, классификация сау и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Математические основы теории автоматического управления

создано: 2021-01-10
обновлено: 2024-11-14
23



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Математические основы теории автоматического управления

Термины: Математические основы теории автоматического управления