Лекция
Привет, мой друг, тебе интересно узнать все про теорема карунена, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое теорема карунена , настоятельно рекомендую прочитать все из категории вероятностные процессы.
Важным принципиальным вопросом теории дискретизации является вопрос об объеме дискретного описания сигналов, то есть о количестве базисных функций, используемых для представления:
.
Чтобы найти оптимальный базис, нужно определить класс сигналов, для которого он отыскивается, а также задать точность восстановления для этого класса. При статистическом подходе к описанию сигналов оптимальным — мерным базисом для представления отдельных реализаций сигналов обычно считается базис, при котором норма ошибки, усредненная по ансамблю реализаций, минимальна. В этом случае необходимые и достаточные условия минимума нормы ошибки представления сигнала в виде суммы базисных функций определяет теорема карунена -Лоэва.
Минимальное значение нормы ошибки представления сигналов на интервале протяженностью достигается при использовании в качестве базиса собственных функций оператора, ядром которого является корреляционная функция сигналов :
,
соответствующих наибольшим собственным значениям. При этом норма ошибки равна:
.
Такое разложение является разложением Карунена-Лоэва .
В теории случайных процессов теорема Карунена-Лоэва (названа в честь Кари Карунена и Мишеля Лоэва) — представление случайного процесса в виде бесконечной линейной комбинации ортогональных функций, аналогичное представлению рядов Фурье — последовательному представлению функций на ограниченном интервале. В отличие от рядов Фурье, где коэффициенты являются действительными числами и базис представления состоит из синусоидальных функций (то есть, из функций синус и косинус с разными частотами), коэффициенты в теореме Карунена-Лоэва — случайные переменные, и базис представления зависит от процесса. Ортогональные базисные функции, использованные в этом представлении, определяет функция ковариации процесса. Если мы рассматриваем стохастический процесс как случайную функцию F, то есть процесс, в котором функция на интервале [a, b] принимает значение F, то эта теорема может рассматриваться как случайное ортонормальное разложение F.
Центрированный случайный процесс {Xt}t ∈ [a, b] (где центрирование означает, что математические ожидания E(Xt) существуют и равны нулю для всех значений параметра t из [a, b]), удовлетворяющий техническому условию непрерывности, допускает разложение следующего вида:
где Zk — взаимнонекоррелированые случайные величины и функции ek — непрерывные вещественные функции на [a, b], ортогональные в L² [a, b]. В случае нецентрированного процесса имеет место аналогичное разложение, получаемое разложением функции математического ожидания в базисе ek.
Если процесс гауссовский, то случайные величины Zk — тоже гауссовские и являются независимыми. Этот результат обобщает преобразования Карунена-Лоэва. Важным примером центрированного случайного процесса на интервале [0,1] является винеровский процесс, и теорема Карунена-Лоэва может быть использована для получения канонического ортогонального представления. В этом случае разложение состоит из синусоидальных функций.
Приведенные выше разложения в также известны как разложения или декомпозиция Карунена-Лоэва (эмпирическая версия, то есть, с коэффициентами из исходных числовых данных), как анализ главных компонент, собственное ортогональное разложение или преобразование Хотеллинга.
Сформулируем результат в терминах комплекснозначных стохастических процессов. Результаты могут быть применены к вещественнозначным процессам без модификаций, вспоминая, что число, комплексно-сопряженное с действительным числом, совпадает с ним самим.
Для случайных элементов X и Y скалярное произведение определяется формулой
где * обозначает операцию комплексного сопряжения.
Скалярное произведение корректно определено, если как , так и имеют конечные вторые моменты, или, что то же самое, если они оба квадратично интегрируемы. Об этом говорит сайт https://intellect.icu . Отметим, что скалярное произведение связано с ковариацией и корреляцией. В частности, для случайных переменных со средним нулевым значением, ковариация и скалярное произведение совпадают. Функция автоковариации
Если процесс {Xt}t центрированный, то
для всех t. Таким образом, автоковариация KXX равна автокорреляции RXX:
Отметим, что если {Xt}t центрированный и t1, ≤ t2, …, ≤ tN являются точками на интервале [a, b], следовательно
Теорема. Рассмотрим центрированный случайный процесс , индексированный на интервале с ковариационной функцией . Предположим, что ковариационная функция непрерывна по совокупности переменных . Тогда — положительно определенное ядро, и по теореме Мерсера интегральный оператор в (близкой к мере Лебега на ) имеет ортонормированный базис из собственных векторов. Пусть являются собственными векторами , соответствующими ненулевым собственным значениям и
Тогда — центрированные ортогональные случайные величины и
ряд сходится в среднем квадратичном, а также равномерно по . Кроме того
где собственное значение, соответствующее собственному вектору .
В формулировке теоремы интеграл в определении можно понимать как предел в среднем сумм Коши случайных величин
где
Так как предел в среднем квадратичном из совместно гауссовских случайных величин является гауссовским и совместно гауссовские случайные (центрированные) величины независимы тогда и только тогда, когда они являются ортогональными, мы можем также заключить:
Теорема. Случайные величины имеют гауссовское распределение и являются независимыми, если первоначальный процесс {Xt}t тоже является гауссовским.
В гауссовском случае, поскольку случайные величины являются независимыми, мы можем быть уверены в том, что:
почти наверное.
Отметим, что обобщая теорему Мерсера, мы можем заменить интервал другими компактными пространствами , а меру Лебега на — борелевской мерой с носителем в .
Винеровский процесс в теории случайных процессов — это математическая модель броуновского движения или случайного блуждания с непрерывным временем. Здесь мы определяем его как центрированный гауссовский процесс B(t) с ковариационной функцией
Легко видеть, что собственные векторы ковариации равны
а соответствующие собственные значения
Это позволяет получить нам следующее представление винеровского процесса:
Теорема. Существует последовательность {Wi}i независимых гауссовких случайных величин с нулевым средним и единичной дисперсией такая, что
Сходимость является равномерной по t в норме L² так, что
равномерно по t.
Было высказано мнение, что в проекте SETI следует использовать преобразования Карунена-Лоэва для обнаружения сигналов с очень широким спектром. Аналогично, в системах адаптивной оптики иногда используют функции Карунена-Лоэва для восстановления информации о фазе фронта волны. (Dai 1996, JOSA A).
Напиши свое отношение про теорема карунена. Это меня вдохновит писать для тебя всё больше и больше интересного. Спасибо Надеюсь, что теперь ты понял что такое теорема карунена и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории вероятностные процессы
Из статьи мы узнали кратко, но содержательно про теорема карунена
Комментарии
Оставить комментарий
вероятностные процессы
Термины: вероятностные процессы