Лекция
Сразу хочу сказать, что здесь никакой воды про развитие математических представлений, и только нужная информация. Для того чтобы лучше понимать что такое развитие математических представлений , настоятельно рекомендую прочитать все из категории Педагогика и дидактика.
Какими методами обучения математике пользовались в древности, точно неизвестно, но есть основания полагать, что методы эти были догматическими, бездоказательными. Рукописи египтян содержали такие указания: «Делай это так или делай это, как принято...», в древней Индии: «Смотри, смотрите», Греции: «Что и требовалось доказать».
Арифметические сборники того времени представляют перечень практических указаний о том, как производятся те или иные арифметические вычисления.
В России ХVІІІ-ХІХ веках представления о методах преподавания математики можно получить по первой русской «Арифметике» Леонтия Филипповича Магницкого, написанной в 1702 г.
Вопросы содержания, методов обучения детей дошкольного возраста арифметике и формирования представлений о размерах, мерах измерения, времени и пространстве, нашли отражение в педагогических системах воспитания Я. А. Коменского, И. Г. Песталоцци, Ф. Фребеля, М. Монтессори, К. Д. Ушинского, Л. Н. Толстого и др.
Они пришли к выводу, что детей нужно обучать математике, высказали предположения о методах обучения и воспитания в семье, разработали книги и пособия.
Чешский педагог Я. А. Коменский (1592-1670) в руководстве «Материнская школа» в программу по арифметике включил:
Иоганн Генрих Песталоцци (1746-1827), швейцарский педагог, предлагал: 1) учить детей счету на конкретных предметах; 2) пониманию действий над числами; 3) умению определять время, широко использовал наглядность.
К. Д. Ушинский (1824-1871) предлагал:
1) обучать счету отдельных предметов и групп;
2) обучать действиями сложения и вычитания;
3) формировать понимание десятка как единицы счета.
Л. Н. Толстой издал в 1872 г «Азбуку», одной из частей которой является «Счет», предлагал обучать детей счету вперед и назад в пределах сотни.
Ф. Фребель (1782-1852), выдающийся немецкий педагог, теоретик дошкольного воспитания, разработавший идею детского сада и основы методики в нем, идеи Ф. Фребеля по вопросам воспитания и организации детских садов принесли ему еще при жизни мировую славу.
Разработал игры и игровые средства. На первое место среди игровых средств Фребель выводит войлочный мячик различной окраски - голубой, желтый, фиолетовый, золотистый. Удерживая одной рукой такой мячик на веревочке, ребенок демонстрирует разные виды и направления движений: вправо, влево, вверх-вниз, круговые, колеблющиеся, обогащается словарный запас детей.
Педагог ставил вопросы ознакомления детей с геометрическими фигурами, величиной, обучению счету, измерениям, составлению рядов предметов по размеру, весу. Обучение математике Ф. Фребель предлагал строить через сенсорную систему.
М. Монтессори (1870-1952) итальянский педагог - через сенсорное воспитание раскрывала вопросы ознакомления детей с формами, величинами, составлению рядов предметов по размеру, весу и т. д. Она считала необходимым создание специальной среды для развития представлений о числе, форме, величинах, а также изучение письменной и устной нумерации. Для этого она предлагала использовать счетные ящики, связки цветных бус, счеты, монеты; числовые штанги с табличками чисел, цифры из шершавой бумаги, цифры-кружки, башенки. Этот материал вводит детей в математическое познание мира. Отсюда ясно, почему Монтессори называла их «базовыми математическими материалами». (Розовая башенка, коричневая лестница, красные штанги, блоки с цифрами, вкладыши и т. д. опосредованно подготавливают детей к усвоению математических знаний - у детей развивается математическое мышление - дети измеряют, сравнивают). Детский ум одновременно впитывает многообразный сенсорный и моторный опыт, естественно развивая при этом математические способности.
Елизавета Ивановна Тихеева в своих книгах «Счет в жизни маленьких детей», «Современный детский сад» (1920 г.) высказывается против систематического обучения дошкольников. Она считает, что до семи лет дети должны сами научиться считать в процессе повседневной жизни и игры. В то же время она возражает и против полной стихийности обучения. В обучение детей счету Е. И. Тихеева включила:
1. Счет до 10 (разработала 60 задач для игр-занятий, на закрепление количественных и пространственных представлений; определила объем знаний, которыми должны овладеть дети; особо подчеркивала важность овладения детьми первого десятка).
2. Об этом говорит сайт https://intellect.icu . Ознакомление детей с цифрами (для этого предлагались игры с парными картинками, счетные ящики).
3. Знакомство детей со сложением и вычитанием, (через решение задач - из практической жизни).
4. Знакомство детей с величиной (больше, меньше, выше-ниже, шире-уже и т. д).
5. Знакомство детей с измерением в игре.
6. Знакомство детей с объемом, измерения емкости сосуда. Для знакомства с массой использовались весы.
Е. И. Тихеева была за свободное обучение детей в игре, в непринужденной обстановке, в повседневной жизни.
Фаина Николаевна Блехер - представительница теории автодидактизма.
Основные мысли о содержании и методах обучения изложила в книге «Математика в детском саду и нулевой группе», вышедшей в 1934 г., и ставшей первым учебным пособием и программой по математике в детском саду.
Ф. Н. Блехер предлагала обучать детей элементам математики с 3-4 лет и выделять понятия «много» и «один», формировать представления о числах 1, 2, 3.
В среднем дошкольном возрасте учить определять количественные характеристики предметов в пределах 10. На основе счета сравнивать числа, пользоваться порядковым счетом.
В старшей группе учить детей составу чисел, цифрам, составлять практически числа из меньших групп; производить действия сложения, вычитания; освоить второй десяток; решать простые задачи.
Обучение предлагалось вести в играх, обучая счету - больше использовать природный материал. В играх дети усваивают сравнение предметов по размерам, знакомятся с геометрическими фигурами, пространственными направлениями.
Дети должны участвовать в практических жизненных ситуациях. Методика обучения счету Ф. Н. Блехер отражала идеи монографического метода - идти в обучении от числа к числу. (Учить счету не допустимо, но число ребенок должен знать, схватывать число глазами, а не обучать счету), разработала дидактические игры, советовала больше использовать природного материала.
Анна Михайловна Леушина - педагог, создавший методику формирования элементарных математических представлений у детей дошкольного возраста. Благодаря ее работам методика получила теоретическое, научное и психолого-педагогическое обоснование, были раскрыты закономерности развития количественных представлений у детей в условиях целенаправленного обучения на занятиях в детском саду. А. М. Леушина, вскрыв закономерности формирования и развития у детей разного возраста представлений о множестве, числе и операции счета, разработала способы и методы обучения детей счетной деятельности в разных возрастных группах, обеспечивающие преемственность между ними.
В формировании математических представлений ведущим является практический метод. Суть его заключается в организации практической деятельности детей, направленной на усвоение строго определенных способов действий с предметами или их заменителями (изображениями, графическими рисунками, моделями и т. д.).
Характерные особенности практического метода при формировании элементарных математических представлений:
— выполнение разнообразных практических действий;
— широкое использование дидактического материала;
— возникновение представлений как результата практических действий с дидактическим материалом:
— выработка навыков счета, измерение и вычисления в самой элементарной форме;
— широкое использование сформированных представлений и освоенных действий в быту, игре, труде, т. е. в разнообразных видах деятельности.
Количественные представления у детей дошкольного возраста формируются через понимание множества - это так называемый дочисловой период. Задача этого периода подвести ребенка к пониманию количественных отношений.
Ребенок окружен различными множествами, выраженными не только предметами, но и звуками. Эти множества ребенок воспринимает различными анализаторами. Получаемые при этом ощущения передаются в кору головного мозга и служат основой формирования представления о неопределенной множественности разных явлений. Отсюда вытекает вывод о том, что необходимо у младших дошкольников сформировать представление о множестве как структурно-целостном единстве и научить видеть и четко воспринимать каждый элемент множества.
Переход от восприятия неопределенной множественности к восприятию множества имеет несколько этапов.
На первом этапе необходимо, чтобы дети воспринимали все промежуточные элементы множества между крайними.
На втором этапе формируют у детей представление о множестве как структурно-целостном единстве.
На третьем этапе - формируют и расширяют представления детей об однородном составе элементов, вводя родовые понятия.
На четвертом этапе необходимо учить детей действовать с различными группами, объединять их по разным признакам.
На пятом этапе - своевременно развивать у детей умение дифференцировать элементы множества, не ограничиваясь лишь восприятием его, производить сравнение численности множества путем практического установления его элементов. Для этого используют приемы наложения и приложения.
Представление о числах, их последовательности, отношениях, месте в натуральном ряду формируется у детей дошкольного возраста под влиянием счета - длительного и сложного процесса. Истоки счетной деятельности усматриваются в манипуляциях детей раннего возраста с предметами. Счет как деятельность формируется поэтапно:
1 этап - 1,5-2 года. Детей привлекают разнородные виды множественности: предметов, звуков, движений. Все движения с предметами сопровождаются повторением одного и того же слова: «вот», «вот» ...,«вот».., или «еще...», «еще...», или «на ... на ...на». Важно, что каждое слово соотносится с одним предметом или с одним движением. Слово помогает выделять элементы из множественности однородных предметов, движений, более четко обособлять один элемент от другого. Этот прием ребенок использует стихийно, он служит известной подготовкой ребенка к счетной деятельности в будущем.
2 этап - 2-3 года. Появляется интерес к сравнению множеств (наложение, приложение). Все эти факты свидетельствуют о стремлении детей определить численность той или иной совокупности или размеров предметов - больше, меньше, поровну. Это первые попытки познать число путем сравнения.
3 этап - 4 года. В развитие счетной деятельности при сопоставлении элементов множеств начинает включаться последовательное название слов - числительных. Дети через обучение осваивают операции счета до пяти, соотносят числительные с предметами. В это время дети часто допускают ошибки пропускают элементы множеств или наоборот, соотносят одно числительное с несколькими объектами, и как правило, не умеют обобщать все перечисленное множество.
4 этап - 5 лет. Дети уже четко усваивают последовательность в названии числительных, более точно соотносят числительное с каждым элементом множества, осваивают закон натурального ряда чисел п +, - 1, т.е. усваивают взаимообратные отношения между смежными числами.
5 этап - 6-7 лет. Дети осваивают счет с различным основанием единицы, считают уже не отдельные предметы, а группы, состоящие из нескольких предметов. Дети усваивают, что единицей счета может быть целая группа, а не только отдельный предмет.
6 этап - школа, развитие счетной деятельности в первом классе.
Процесс счета состоит из двух компонентов: двигательного и речевого.
Двигательный компонент:
Обучение количественному счету должно помочь детям понять цель счета и овладеть средствами (правилами счета). Постепенно детей обучают порядковому счету. Чтобы дети усвоили закономерность образования чисел, добавляется окончание к количественному числительному пять - пятый. Наглядный материал берется такой, где каждая единица чем-то выделена. Детей следует научить различать вопросы: «Сколько?», «Какой?», «Который?» - и правильно отвечать на них.
Обучение детей приему счета предметов идет в следующей последовательности:
Знакомство с количественным составом числа из единицы в пределах 5 на конкретном материале:
5 - это один, еще один, еще один, еще один и еще один.
Формирование у детей понятия о том, что предмет (лист бумаги, ленту, круг, квадрат) можно разделить на несколько равных частей (на две, четыре). Обучение называть части, полученные от деления; сравнивать целое и части, понимать, что целый предмет больше каждой своей части, а часть меньше целого. Детям предоставить возможность самим поупражняться в делении предметов.
Продолжать совершенствование навыков количественного и порядкового счета предметов, закрепления понимания отношений между числами натурального ряда (7 больше 6 на 1, а 6 меньше 7 на 1).
Обучение раскладывать числа на два меньших и составлять из двух меньших большее в пределах 10 (удобно для первого знакомства использовать двухсторонние круги).
В старшем дошкольном возрасте дети на наглядной основе составляют и решают простые задачи на сложение (к большему числу прибавляется меньшее) и на вычитание (вычитаемое меньше остатка); при решении задач дети пользуются знаками действий: плюс (+), минус (-) и знаком отношения равно (=).
Для закрепления навыков счета используют разные виды задач по характеру наглядного материала: драматизации, картинки, иллюстрации, модели и устные. Выделяют следующие этапы в обучении решению задач:
Как ты считаеешь, будет ли теория про развитие математических представлений улучшена в обозримом будующем? Надеюсь, что теперь ты понял что такое развитие математических представлений и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Педагогика и дидактика
Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.
Комментарии
Оставить комментарий
Педагогика и дидактика
Термины: Педагогика и дидактика