5.27.1. Гидролиз солей

Лекция



Привет, Вы узнаете о том , что такое гидролиз солей, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое гидролиз солей , настоятельно рекомендую прочитать все из категории Неорганическая химия.

Понятие о реакциях гидролиза

В водном растворе частицы растворенного вещества взаимодействуют с молекулами воды. Такое взаимодействие нередко приводит к реакции гидролиза (от др.-греч. hydro — вода + lysis — разложение).

Гидролиз — это химическая реакция взаимодействия вещества с водой, при которой происходит разложение молекул этого вещества и воды с образованием новых соединений.

Гидролиз соединений различных классов — солей, углеводов, галогеналканов, белков, сложных эфиров (в том числе жиров) и др. существенно различается. С гидролизом галогеналканов, белков (полипептидов), ди- и полисахаридов (на примере сахарозы, крахмала и целлюлозы), а также сложных эфиров вы познакомились в курсе органической химии. В этом разделе мы рассмотрим гидролиз неорганических веществ — солей.

гидролиз солей это обменное взаимодействие между молекулами воды и катионами или анионами соли, приводящее к образованию слабых электролитов.

Анионы слабых кислот, взаимодействуя с катионами водорода, могут образовывать слабо диссоциирующие молекулы кислоты. Катионы слабых оснований, взаимодействуя с гидроксид-ионами, могут образовывать малодиссоциирующие основания.

Среда в водных растворах гидролизующихся солей может быть кислой (pH < 7,0) или щелочной (pH > 7,0) потому, что в растворе соли в результате гидролиза появляется избыток ионов Н+ или ОН.

Отличие среды раствора соли от нейтральной — один из признаков гидролиза соли. Насколько велико это отличие, а также кислым или щелочным является раствор соли, зависит от силы основания и кислоты, из которых эта соль образуется по реакции нейтрализации.

Классификация солей по их подверженности реакции гидролиза

Любая соль может быть представлена как продукт реакции нейтрализации (от лат. neuter — ни тот, ни другой) при взаимодействии кислоты и основания. Кислоты и основания могут быть как сильными, так и слабыми электролитами.

Реакция нейтрализации — это реакция обмена между кислотой и основанием с образованием соли и воды:

KOH + HF = KF + H2O.

Кислоты и основания как электролиты различаются по своей силе. Например, соли аммония можно рассматривать как образованные в реакции с участием слабого основания — гидрата аммиака NH3 · H2O. Соль KF образована сильным основанием KОН и слабой кислотой HF, сульфид аммония — слабым основанием и слабой кислотой.

В зависимости от силы основания и кислоты можно выделить четыре типа солей (рис. 60.1).

5.27.1. Гидролиз солей

Рис. 60.1. Классификация солей по их подверженности реакции гидролиза

Рассмотрим гидролиз солей всех четырех типов.

Соли, образованные сильным основанием и слабой кислотой. В качестве примера можно привести ацетат натрия CH3COONa. Эта соль образована сильным основанием NaОН и слабой кислотой CH3COOH:

NaОН + CH3COOH = CH3COONa + H2O.

В водном растворе ацетата натрия происходят два процесса:

а) полная диссоциация сильного электролита — соли CH3COONa на катион и анион:

CH3COONa → Na+ + CH3COO;

б) взаимодействие ацетат-ионов с молекулами воды с образованием слабого электролита — уксусной кислоты:

CH3COO + H2О 5.27.1. Гидролиз солей CH3COOH + ОН.

Избыток анионов ОН накапливается в растворе и создает слабощелочную среду, что свидетельствует о протекании гидролиза по аниону CH3COO.

Уравнение гидролиза ацетата натрия показывает, что:

  • а) в растворе концентрация гидроксид-анионов больше, чем в чистой воде, поэтому раствор СH3COONa имеет слабощелочную среду (pH > 7);
  • б) в реакции обмена с водой и в образовании слабой кислоты участвуют только анионы СH3COO, поэтому говорят, что гидролиз идет по аниону.

Равновесие гидролиза в данном примере сильно смещено влево — в сторону образования исходных веществ, так как вода — значительно более слабый электролит, чем уксусная кислота СH3COOH.

Гидролиз является реакцией, обратной нейтрализации.

Примеры анионов слабых кислот, соли которых гидролизуются водой:

  • а) анионы слабых одноосновных кислот: HCOO, 5.27.1. Гидролиз солей, F;
  • б) анионы слабых многоосновных кислот: S2–, 5.27.1. Гидролиз солей, 5.27.1. Гидролиз солей, 5.27.1. Гидролиз солей, 5.27.1. Гидролиз солей.

Рассмотрим гидролиз карбоната натрия Na2СO3 — соли сильного основания NaOH и слабой двухосновной кислоты H2CO3. Гидролиз протекает по аниону 5.27.1. Гидролиз солей в соответствии с уравнением в полной ионной форме:

2Na+ + 5.27.1. Гидролиз солей+ H2O 5.27.1. Гидролиз солей 2Na+ + 5.27.1. Гидролиз солей + OH.

Уравнение в сокращенной ионной форме выглядит так:

5.27.1. Гидролиз солей + H2O 5.27.1. Гидролиз солей 5.27.1. Гидролиз солей + OH.

В растворе Na2СO3 образуется избыток гидроксид-анионов и создается щелочная среда. Об этом говорит сайт https://intellect.icu . Раствор Na2CO3 с концентрацией 0,1 моль/дм3 имеет рН около 11,5.

Соли, образованные сильной кислотой и слабым основанием. Рассмотрим гидролиз хлорида аммония NH4Cl. Это соль сильной кислоты — HCl и слабого основания — гидрата аммиака NH3 · H2O.

В водном растворе соли происходят два процесса:

а) полная диссоциация сильного электролита — соли NH4Cl:

NH4Cl → 5.27.1. Гидролиз солей+ Cl;

б) взаимодействие ионов аммония с молекулами воды с образованием слабого электролита — гидрата аммиака NH3 · H2O:

5.27.1. Гидролиз солей+ H2O 5.27.1. Гидролиз солей NH3 · H2O + H+.

Это уравнение показывает, что:

  • а) в растворе накапливаются катионы водорода Н+ и их концентрация становится больше, чем в чистой воде, поэтому раствор NH4Cl имеет кислую среду (pH < 7);
  • б) в реакции обмена с водой с образованием слабого основания участвуют только катионы аммония 5.27.1. Гидролиз солей, поэтому говорят, что идет гидролиз по катиону.

В реакцию с водой могут вступать и многозарядные катионы: двухзарядные Ni2+, Cu2+, Zn2+, Mn2+, Fe2+, Co2+, Pb2+ (кроме катионов Mg2+, Ca2+, Sr2+, Ba2+), трехзарядные Fe3+, Al3+, Сr3+.

Рассмотрим гидролиз нитрата меди(II) Сu(NO3)2. Это соль сильной кислоты — HNO3 и слабого основания — Cu(OH)2.

В этом случае принято говорить, что гидролиз протекает по катиону Cu2+. Уравнение гидролиза в полной ионной форме:

Cu2+ + 5.27.1. Гидролиз солей+ H2O 5.27.1. Гидролиз солей Cu(OH)+ + 5.27.1. Гидролиз солей + H+.

Уравнение гидролиза в сокращенной ионной форме:

Cu2+ + H2O 5.27.1. Гидролиз солей Cu(OH)+ + H+.

Продуктами гидролиза являются основная соль Cu(OH)NO3 и азотная кислота HNO3.

Среда водного раствора нитрата меди(II) кислая (pH ≈ 4,5), поскольку в растворе имеется избыток катионов Н+.

Соли, образованные слабым основанием и слабой кислотой. Такие соли подвергаются гидролизу и по катиону, и по аниону. При этом появляющиеся при гидролизе по катиону ионы Н+ связываются образующимися при гидролизе по аниону ионами ОН, что усиливает гидролиз. Нередко эта реакция необратима. Например, сульфид алюминия Al2S3 в воде подвергается необратимому гидролизу с образованием нерастворимого гидроксида алюминия и газообразного сероводорода:

Al2S3 + 6H2O = 2Al(OH)3↓ + 3H2S↑.

Поэтому сульфид алюминия Al2S3 нельзя получить реакцией обмена между водными растворами двух солей, например, нитрата алюминия Al(NO3)3 и сульфида калия K2S.

Возможны и другие случаи необратимого гидролиза. Их нетрудно предсказать, ведь для необратимости процесса необходимо, чтобы хотя бы один из продуктов гидролиза уходил из сферы реакции. Приведем пример совместного необратимого гидролиза катионов Al3+ и анионов 5.27.1. Гидролиз солей:

2Al(NO3)3 + 3Na2CO3 + 3H2O = 2Al(OH)3↓ + 6NaNO3 + 3CO2↑.

Для солей, подвергающихся необратимому гидролизу, в таблице «Растворимость кислот, оснований и солей в воде» вы найдете примечание: «не существуют в водном растворе».

Подведем итог тому, что вы узнали о гидролизе и по катиону, и по аниону:

  • а) если соли гидролизуются по катиону и аниону одновременно, то равновесие в этой реакции больше смещено вправо, чем для гидролиза этих ионов по отдельности;
  • б) положение равновесия реакции гидролиза по катиону и аниону не зависит от концентрации соли (докажите это самостоятельно);
  • в) реакция среды при этом виде гидролиза может быть нейтральной, слабокислой или слабощелочной, что зависит от силы образующихся основания и кислоты (слабокислая среда свидетельствует о том, что основание является более слабым электролитом, чем кислота, а слабощелочная среда — наоборот);
  • г) соли могут необратимо гидролизоваться по катиону и аниону при условии, что хотя бы один из продуктов гидролиза уходит из сферы реакции.

Обобщим информацию о гидролизе различных катионов и анионов в составе средних солей по катионам и анионам в таблице 19.1.

Таблица 19.1. Гидролиз катионов и анионов

Состав соли Ионы, по которым не идет гидролиз Ионы, по которым идет гидролиз в порядке усиления Ионы, по которым идет сильный гидролиз
Катионы K+, Na+, Li+, Ba2+, Sr2+, Ca2+, Mg2+, Ag+ Mn2+, Co2+, Zn2+, Ni2+, Fe2+, Pb2+, Cu2+, Be2+ Al3+, Cr3+, Sn2+, Fe3+
Анионы Cl, Br, I, 5.27.1. Гидролиз солей, 5.27.1. Гидролиз солей, 5.27.1. Гидролиз солей, 5.27.1. Гидролиз солей F, 5.27.1. Гидролиз солей, HCOO, CH3COO, 5.27.1. Гидролиз солей, ClO 5.27.1. Гидролиз солей, 5.27.1. Гидролиз солей, 5.27.1. Гидролиз солей, S2–

Не гидролизуются: растворимые галогениды (кроме фторидов), нитраты, перхлораты, сульфаты и перманганаты щелочных и щелочноземельных металлов.

Отметим, что реакции обратимого гидролиза подчиняются принципу Ле Шателье, поэтому гидролиз соли можно как усилить, так и ослабить.

Гидролиз солей обусловлен протеканием реакций ионного обмена с участием молекул воды и ионов соли с образованием слабого электролита.

Гидролиз по аниону, как правило, обратим и протекает в небольшой степени. При разбавлении растворов солей равновесие гидролиза смещается вправо, реакция среды в растворах солей слабых кислот слабощелочная, изредка сильнощелочная.

Гидролиз по катиону, как правило, обратим и протекает в небольшой степени. При разбавлении растворов солей равновесие гидролиза смещается вправо, реакция среды в растворах солей слабых оснований слабокислая, изредка сильнокислая.

Гидролиз одновременно по катиону и аниону протекает в значительно большей степени, чем гидролиз этих ионов по отдельности. Положение равновесия реакции гидролиза по катиону и аниону не зависит от концентрации соли, а реакция среды раствора не сильно отклоняется от нейтральной.

Соли слабых кислот и оснований необратимо гидролизуются по катиону и аниону при удалении из раствора одного из продуктов реакции в виде газа.

Вопросы, задания, задачи

1. Соли каких типов подвержены гидролизу?

2. Какие из солей, формулы которых: K3PO4, Al2(SO4)3, MgSO4, NH4NO3, Pb(NO3)2, Na2CO3, подвергаются гидролизу по катиону? Составьте уравнения гидролиза этих солей, укажите реакцию среды.

3. Какие из солей, формулы которых: Na2S, AlCl3, K2SO3, Cr2(SO4)3, (CH3COO)2Ba, AgF, Mg(NO3)2, Na2SiO3, KMnO4, Na3PO4, подвергаются гидролизу по аниону? Составьте уравнения гидролиза этих солей, укажите реакцию среды и окраску лакмуса в растворе.

4. Реакция нейтрализации сильных кислот или оснований протекает с выделением теплоты. Используя принцип Ле Шателье, обоснуйте, почему при нагревании равновесие гидролиза смещается вправо.

5. Степень диссоциации воды возрастает в 7,5 раза при ее нагревании от 25 °С до 100 °С и уменьшается в 3 раза при охлаждении воды от 25 °С до 0 °С. Дайте объяснение этим фактам с учетом того, что диссоциация воды — эндотермическая реакция. Куда смещается равновесие гидролиза при повышении и понижении температуры и как оно зависит от степени диссоциации воды?

6. Какие из приведенных солей подвергаются гидролизу и по катиону, и по аниону: NH4F, (CH3COO)3Al, (CH3COO)2Cu, (NH4)2CO3, KNO2, AgNO3, Na3PO4, CrCl3? Составьте уравнения гидролиза этих солей (все реакции обратимы) в полной ионной форме.

7. Добавление каких из указанных веществ к раствору сульфата железа(III) усилит гидролиз соли: НСl, NH3, HNO3, Н2O, K2CO3? Дайте объяснение.

8. Стеарат натрия C17H35COONа (твердое мыло) гидролизуется в воде по аниону. Составьте уравнение гидролиза в полной и сокращенной ионной формах и укажите, какую среду имеет раствор. Как влияют температура и разбавление раствора мыла на равновесие реакции гидролиза? Почему сода Na2CO3 препятствует гидролизу мыла?

9. Очистка питьевой воды от взвешенных нерастворимых примесей проводится методом коагуляции — слипания мелких частиц с образованием более крупных хлопьев, которые выпадают в осадок. Коагуляция включает три стадии: смешение реагентов с очищаемой водой, образование хлопьев и осаждение хлопьев вместе с загрязнителем. Для проведения коагуляции воду подщелачивают содой и добавляют растворимую соль алюминия. В воде соль алюминия превращается в Al(OH)3 по схеме одновременного гидролиза по катиону Al3+ и аниону 5.27.1. Гидролиз солей. Образующийся Al(OH)3 представляет собой белые хлопья с большой поверхностью. Хлопья захватывают взвешенные частички, бактерии, ионы тяжелых металлов, затем укрупняются и оседают вместе с загрязнениями на дно отстойника. Напишите уравнение реакции между сульфатом алюминия и карбонатом натрия в молекулярной, полной и сокращенной ионной формах.

10. При сливании растворов FeCl3 и Na2CO3 выпадает осадок бурого цвета и наблюдается выделение газа. Какое вещество выпадает в осадок и какой газ выделяется? Напишите уравнение протекающей реакции и рассчитайте объем (н. у.) выделившегося газа, если к раствору Na2CO3 объемом 100 см3 с массовой долей растворенного вещества 7,85 % и плотностью 1,080 г/см3 прилили избыток раствора FeCl3.

Самоконтроль

1. Щелочную среду имеют растворы солей:

  • а) ВаCl2 и MgCl2;
  • б) K2SO3 и KNO2;
  • в) С6Н5ОNa и С17Н35СООNa;
  • г) K2СO3 и K2S.

2. рН >7 имеют водные растворы:

  • а) Na2СO3;
  • б) FeCl3;
  • в) CH3COONа;
  • г) CuSO4.

3. Лакмус окрасит в красный цвет раствор:

  • а) Pb(NO3)2;
  • б) ZnCl2;
  • в) KCl;
  • г) NH4Cl.

4. Равновесие реакции гидролиза в растворе медного купороса

Cu2+ + H2O 5.27.1. Гидролиз солей Cu(OH)+ + H+

можно сместить влево («подавить гидролиз»):

  • а) разбавив водой;
  • б) охладив раствор;
  • в) добавив раствор соды;
  • г) добавив серной кислоты.

5. Не образуется соль при сливании растворов:

  • а) FeCl3 и Na2CO3;
  • б) AlCl3 и K2CO3;
  • в) BaCl2 и Na2CO3;
  • г) NH4Cl и AgNO3.

Исследование, описанное в статье про гидролиз солей, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое гидролиз солей и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Неорганическая химия

Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.

создано: 2025-04-18
обновлено: 2025-04-18
27



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Неорганическая химия

Термины: Неорганическая химия