Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Распределенные и параллельные системы баз данных

Лекция



Сразу хочу сказать, что здесь никакой воды про распределенные и параллельные системы баз данных, и только нужная информация. Для того чтобы лучше понимать что такое распределенные и параллельные системы баз данных , настоятельно рекомендую прочитать все из категории Базы данных, знаний и хранилища данных. Big data, СУБД и SQL и noSQL.

Распределенные базы данных (РБД) — совокупность логически взаимосвязанных баз данных, распределенных в компьютерной сети.

Основные принципы

РБД состоит из набора узлов, связанных коммуникационной сетью, в которой:

  • каждый узел — это полноценная СУБД сама по себе;
  • узлы взаимодействуют между собой таким образом, что пользователь любого из них может получить доступ к любым данным в сети так, как будто они находятся на его собственном узле.

Каждый узел сам по себе является системой базы данных. Любой пользователь может выполнить операции над данными на своем локальном узле точно так же, как если бы этот узел вовсе не входил в распределенную систему. Распределенную систему баз данных можно рассматривать как партнерство между отдельными локальными СУБД на отдельных локальных узлах.

Фундаментальный принцип создания распределенных баз данных («правило 0»): Для пользователя распределенная система должна выглядеть так же, как нераспределенная система.

Фундаментальный принцип имеет следствием определенные дополнительные правила или цели. Таких целей всего двенадцать:

  1. Локальная независимость. Узлы в распределенной системе должны быть независимы, или автономны. Локальная независимость означает, что все операции на узле контролируются этим узлом.
  2. Отсутствие опоры на центральный узел. Локальная независимость предполагает, что все узлы в распределенной системе должны рассматриваться как равные. Поэтому не должно быть никаких обращений к «центральному» или «главному» узлу с целью получения некоторого централизованного сервиса.
  3. Непрерывное функционирование. Распределенные системы должны предоставлять более высокую степень надежности и доступности.
  4. Независимость от расположения. Пользователи не должны знать, где именно данные хранятся физически и должны поступать так, как если бы все данные хранились на их собственном локальном узле.
  5. Независимость от фрагментации. Система поддерживает независимость от фрагментации, если данная переменная-отношение может быть разделена на части или фрагменты при организации ее физического хранения. В этом случае данные могут храниться в том месте, где они чаще всего используются, что позволяет достичь локализации большинства операций и уменьшения сетевого трафика.
  6. Независимость от репликации. Система поддерживает репликацию данных, если данная хранимая переменная-отношение — или в общем случае данный фрагмент данной хранимой переменной-отношения — может быть представлена несколькими отдельными копиями или репликами, которые хранятся на нескольких отдельных узлах.
  7. Обработка распределенных запросов. Суть в том, что для запроса может потребоваться обращение к нескольким узлам. В такой системе может быть много возможных способов пересылки данных, позволяющих выполнить рассматриваемый запрос.
  8. Управление распределенными транзакциями. Существует 2 главных аспекта управления транзакциями: управление восстановлением и управление параллельностью обработки. Что касается управления восстановлением, то чтобы обеспечить атомарность транзакции в распределенной среде, система должна гарантировать, что все множество относящихся к данной транзакции агентов (агент — процесс, который выполняется для данной транзакции на отдельном узле) или зафиксировало свои результаты, или выполнило откат. Что касается управления параллельностью, то оно в большинстве распределенных систем базируется на механизме блокирования, точно так, как и в нераспределенных системах.
  9. Аппаратная независимость. Желательно иметь возможность запускать одну и ту же СУБД на различных аппаратных платформах и, более того, добиться, чтобы различные машины участвовали в работе распределенной системы как равноправные партнеры.
  10. Независимость от операционной системы. Возможность функционирования СУБД под различными операционными системами.
  11. Независимость от сети. Возможность поддерживать много принципиально различных узлов, отличающихся оборудованием и операционными системами, а также ряд типов различных коммуникационных сетей.
  12. Независимость от типа СУБД. Необходимо, чтобы экземпляры СУБД на различных узлах все вместе поддерживали один и тот же интерфейс, и совсем необязательно, чтобы это были копии одной и той же версии СУБД.

Типы распределенных баз данных

  1. Распределенные базы данных
  2. Мультибазы данных с глобальной схемой. Система мультибаз данных — это распределенная система, которая служит внешним интерфейсом для доступа ко множеству локальных СУБД или структурируется, как глобальный уровень над локальными СУБД.
  3. Федеративные базы данных. В отличие от мультибаз не располагают глобальной схемой, к которой обращаются все приложения. Вместо этого поддерживается локальная схема импорта-экспорта данных. На каждом узле поддерживается частичная глобальная схема, описывающая информацию тех удаленных источников, данные с которых необходимы для функционирования.
  4. Мультибазы с общим языком доступа — распределенные среды управления с технологией «клиент-сервер»

распределенные и параллельные системы баз данных

М. Тамер Оззу, Патрик Валдуриз

Источник: журнал Системы Управления Базами Данных # 4/1996, издательский дом «Открытые системы»
Новая редакция: Сергей Кузнецов, 2009 г.

Оригинал: M. Tamer Ozsu, Patrick Valduriez. Distributed and parallel database systems.

Содержание

ВведениеОсновные понятияТехнологии распределенных и параллельных баз данных

Архитектурные проблемыОбработка и оптимизация запросовУправление одновременным доступомПротоколы обеспечения надежностиПротоколы репликации

Исследовательские проблемы

Размещение данныхПроблемы сетевой масштабируемостиРаспределенная и параллельная обработка запросовРаспределенная обработка транзакций

ЗаключениеОпределения терминовЛитература

Введение

Становление систем управления базами данных (СУБД) совпало по времени со значительными успехами в развитии технологий распределенных вычислений и параллельной обработки. В результате возниклираспределенные системы управления базами данных и параллельные системы управления базами данных. Именно эти системы становятся доминирующими инструментами для создания приложений интенсивной обработки данных.

Благодаря интеграции рабочих станций в распределенную среду становится возможным более эффективное распределение функций в ней, когда прикладные программы выполняются на рабочих станциях, называемых серверами приложений, а базы данных обслуживаются выделенными компьютерами, называемыми серверами баз данных. Это служит источником развития таких распределенных архитектур, где в роли узлов выступают не просто компьютеры общего назначения, а специализированные серверы.

Параллельный компьютер, или мультипроцессор сам по себе является распределенной системой, составленной из узлов (процессоров, компонентов памяти), соединенных быстрой сетью внутри общего корпуса. Технология распределенных баз данных может быть естественным образом пересмотрена и распространена на параллельные системы баз данных, т. е. системы баз данных на параллельных компьютерах [DeWitt and Gray, 1992, Valduriez, 1993]. Благодаря применяемому в системах этого типа параллелизму при управлении данными [Boral, 1988] пользователи получают серверы баз данных высокой производительности и высокой доступности за существенно меньшую цену, чем эквивалентные системы на основе мэйнфреймов [DeWitt and Gray, 1992, Valduriez, 1993].

В статье представлен обзор технологий распределенных и параллельных СУБД, выделены их отличительные черты, отмечены схожие признаки. Цель обзора – помочь в осмыслении уникальной роли систем каждого из этих двух типов и их взаимодополняемости в решении задач управления данными.

Основные понятия

Распределенная база данных (DDB – distributed database) – это совокупность логически взаимосвязанных баз данных, распределенных в компьютерной сети. Распределенная система управления базой данных определяется как программная система, которая позволяет управлять распределенной базой данных таким образом, чтобы ее распределенность была прозрачна для пользователей [Ozsu and Valduriez, 1991a]. В этом определении следует уточнить две отличительных архитектурных особенности. Первая из них заключается в том, что система состоит из (возможно, пустого) множества узлов приема запросов (query site) и непустого множества узлов данных (data site). Узлы данных обладают средствами для хранения данных, а узлы приема запросов – нет. В узлах приема запросов лишь выполняются программы, реализующие пользовательский интерфейс для доступа к данным, хранящимся в узлах данных. Вторая особенность состоит в том, что узлы логически представляют собой независимые компьютеры. Следовательно, у такого узла имеется собственная основная и внешняя память, установлена собственная операционная система (может быть, одна и та же на всех узлах, а возможно, и нет) и имеется возможность выполнять приложения. Узлы связаны компьютерной сетью, а не входят в мультипроцессорную конфигурацию. Важно подчеркнуть слабую связанность процессоров, которые обладают собственными операционными системами и функционирует независимо.

База данных физически распределяется по узлам данных на основе фрагментации и репликации данных [Ceri et al., 1987]. При наличии схемы реляционной базы данных каждое отношение фрагментируется на горизонтальные или вертикальные разделы. Горизонтальная фрагментация реализуется при помощи операции селекции, которая направляет каждый кортеж отношения в один из разделов, руководствуясь предикатом фрагментации. Например, для отношения Employee возможна фрагментация в соответствии с местоположением рабочих мест служащих. При вертикальной фрагментации отношение делится на разделы при помощи операции проекции. Например, один раздел отношения Employee может содержать поля Emp_number, Emp_name и Address, а другой – поля Emp_number, Salary и Manager. За счет фрагментации данные приближаются к месту их наиболее интенсивного использования, что потенциально снижает затраты на пересылки; уменьшаются также размеры отношений, участвующих в пользовательских запросах.

Фрагменты данных могут также реплицироваться на основе характера доступа к ним. Это полезно, если доступ к одним и тем же данным производится из приложений, выполняющихся на разных узлах. В таком случае, с точки зрения экономии затрат, более эффективно дублировать данные в ряде узлов, чем непрерывно пересылать данные между узлами.

При ослаблении отличительных особенностей распределенной СУБД получается параллельная система баз данных. Не существует четкого разграничения между параллельными и распределенными СУБД. В частности, архитектуры параллельных СУБД без совместно используемых ресурсов (sharing-nothing), которые обсуждаются ниже, схожи со слабо связанными распределенными системами. В параллельных СУБД используются новейшие многопроцессорные архитектуры, и на основе этого подхода создаются высокопроизводительные серверы баз данных высокой доступности, стоимость которых значительно ниже эквивалентных систем на мэйнфреймах.

Параллельную СУБД можно определить как СУБД, реализованную на мультипроцессорном компьютере. Такое определение подразумевает наличие множества альтернатив, спектр которых варьируется от непосредственного переноса существующих СУБД с переработкой лишь интерфейса к операционной системе до изощренных комбинаций алгоритмов параллельной обработки и функций баз данных, приводящих к новым аппаратно-программные архитектурам. Как и всегда, приходится выбирать междупереносимостью (на несколько платформ) и эффективностью. Изощренные подходы направлены, главным образом, на более полное использование преимуществ конкретного мультипроцессора в ущерб переносимости.

Решение, тем самым, заключается в применении широкомасштабного параллелизма, чтобы усилить мощность отдельных компонентов путем их интеграции в целостную систему на основе соответствующего программного обеспечения параллельных баз данных. Важное значение имеет применение стандартных аппаратных компонентов, для того чтобы иметь возможность с минимальным отставанием использовать результаты постоянных технологических усовершенствований. В программном обеспечении базы данных могут быть предусмотрены три вида параллелизма, присущие приложениям интенсивной обработки данных. Межзапросный параллелизм предполагает одновременное выполнение множества запросов, относящихся к разным транзакциям. Под внутризапросным параллелизмом понимается одновременное выполнение сразу нескольких операций (например операций выборки), относящихся к одному и тому же запросу. И внутризапросный, и межзапросный параллелизм реализуется на основе разделения данных, аналогичного горизонтальному фрагментированию. Наконец, понятие внутриоперационного параллелизма означает параллельное выполнение одной операции в виде набора субопераций с применением, в дополнение к фрагментации данных, также и фрагментации функций. Языки баз данных, ориентированные на операции над множествами, обеспечивают много возможностей для использования внутриоперационного параллелизма.

Ниже перечислены характерные черты параллельных и распределенных СУБД.

  1. Распределенная/параллельная база данных – это именно база данных, а не "коллекция" файлов, индивидуально хранимых на разных узлах сети. В этом заключается разница между DDB и распределенной файловой системой. Распределенные данные представляют собой DDB, только если они связаны в соответствии с некоторым структурным формализмом (таким как реляционная модель), а для доступа к ним имеется единый высокоуровневый интерфейс.
  2. Система обладает полной функциональностью СУБД. Она не сводится по своим возможностям ни к распределенным файловым системам, ни к системам обработки транзакций. Обработка транзакций – только одна из функций, предоставляемых подобными системами. Наряду с этим они должны также обеспечивать функции запросов и структурной организации данных, которые необязательно поддерживаются системами обработки транзакций.
  3. Распределение (включая фрагментацию и репликацию) данных по множеству узлов невидимо для пользователей. Это свойство называется прозрачностью. Технология распределенных/параллельных баз данных распространяет основополагающую для управления базами данных концепцию независимости данных на среду, где данные распределены и реплицированы по множеству компьютеров, связанных сетью. Это обеспечивается за счет нескольких видов прозрачности: прозрачность сети (следовательно, прозрачность распределения), прозрачность репликации и прозрачность фрагментации. Прозрачность доступа означает, что пользователи имеют дело с единым логическим образом базы данных и осуществляют доступ к распределенным данным точно так же, как если бы они хранились централизованно. В идеале полная прозрачность подразумевает наличие языка запросов к распределенной СУБД, не отличающегося от языка для централизованной СУБД.

Вопросы прозрачности более критичны для распределенных, чем для параллельных СУБД. Для этого есть две причины. Во-первых, многопроцессорные системы, для которых реализуются параллельные СУБД, функционируют под управлением единой операционной системы. Операционная система может быть организована таким образом, чтобы брать на себя некоторые аспекты функциональности СУБД, предоставляя тем самым определенную степень прозрачности. Во-вторых, разработки программного обеспечения на параллельных системах поддерживаются языками параллельного программирования, также обеспечивающими некоторую степень прозрачности.

В распределенных СУБД данные и приложения, которые осуществляют доступ к ним, могут быть локализованы на одном и том же узле, благодаря чему исключается (или сокращается) потребность в удаленном доступе к данным, характерная для систем телеобработки данных в режиме разделения времени. Далее, поскольку на каждом узле выполняется меньше приложений и хранится меньшая порция базы данных, можно сократить также конкуренцию при доступе к данным и ресурсам. Наконец, параллелизм, внутренне присущий распределенным системам, открывает возможности для реализации межзапросного и внутризапросного параллелизма.

Если доступ пользователей к базе данных заключается только в выполнении запросов (т. е. имеет место доступ только по чтению), то реализация межзапросного и внутризапросного параллелизма подразумевает реплицирование по возможности максимальной части базы данных. Но, поскольку на практике доступ к базе данных осуществляется не только по чтению, для реализации перемежающихся операций чтения и модификации данных необходима поддержка распределенных транзакций (обсуждаемых в одном из последующих разделов).

Высокая производительность – одна из важнейших целей, на достижение которой направлены технологии параллельных СУБД. Как правило, она обеспечивается за счет сочетания нескольких взаимно дополняющих решений, таких как применение операционных систем, ориентированных на поддержку баз данных, параллелизм, оптимизация, балансировка нагрузки. Наличие операционной системы, "осведомленной" о специфических потребностях баз данных (например относительно управления буферами), упрощает реализацию функций баз данных нижнего уровня и способствует снижению их стоимости. Так, затраты на передачу сообщения могут быть значительно снижены (до нескольких сот инструкций) за счет применения специализированного коммуникационного протокола. Механизмы распараллеливания способствуют повышению общей пропускной способности системы (межзапросный параллелизм), снижению времени отклика для отдельных транзакций (внутризапросный и внутриоперационный параллелизм).

Технологии распределенных и параллельных СУБД направлены также на повышение надежности, поскольку, благодаря репликации данных, исключаются одиночные точки отказа. Отказ одного узла или сбой на линии связи не приводит к выходу из строя всей системы. Даже если часть данных становится недоступной, при правильной организации системы пользователи могут иметь доступ к остальной части информации. Под "правильной организацией" понимается поддержка распределенных транзакций и протоколов обеспечения надежности (т. е. протоколов фиксации и восстановления). Эти вопросы обсуждаются в следующем разделе.

В среде параллельных и распределенных СУБД упрощается решение вопросов, связанных с возрастанием объема баз данных или потребностей обработки. При этом редко возникает необходимость в серьезной перестройке системы; расширение возможностей обычно достигается за счет добавления процессорных мощностей или памяти.

В идеале параллельная (и, в меньшей степени, распределенная) СУБД обладает свойством линейной масштабируемости (linear scaleup) и линейного ускорения (linear speedup). Под линейной масштабируемостью понимается сохранение того же уровня производительности при увеличении размера базы данных и одновременном пропорциональном увеличении процессорной мощности и объема памяти. Линейное ускорение означает, что с наращиванием процессорной мощности и объема памяти при сохранении прежнего размера базы данных пропорционально возрастает производительность. Более того, при расширении системы должна потребоваться лишь минимальная реорганизация существующей базы данных.

С учетом соотношения цена/производительность для микропроцессоров и рабочих станций оказывается экономически выгоднее составить систему из нескольких небольших компьютеров, чем реализовать ее на эквивалентной по мощности одной большой машине. Множество коммерческих распределенных СУБД функционирует на мини-компьютерах и рабочих станциях именно по причине более выгодного соотношения цена/производительность. Технологии, основанные на применении рабочих станций, получили столь широкое распространение благодаря тому, что большинство коммерческих СУБД способно работать в рамках локальных сетей, где в основном и используются рабочие станции. Развитие распределенных СУБД, предназначенных для глобальных сетей WAN, может привести к повышению роли мэйнфреймов. С другой стороны, распределенные СУБД будущих поколений, скорее всего, будут поддерживать иерархические сетевые структуры, узлы которых являются кластерами компьютеров, взаимодействующих в локальной сети, а сами кластеры соединяются посредством высокоскоростных магистралей.

Технологии распределенных и параллельных баз данных

Распределенные и параллельные СУБД предоставляют ту же функциональность, что и централизованные СУБД, если не считать того, что они работают в среде, где данные распределены по узлам компьютерной сети или многопроцессорной системы. Как уже упоминалось, пользователи могут вообще ничего не знать о распределении данных. Таким образом, эти системы обеспечивают пользователям логически интегрированное представление физически распределенной базы данных. Поддержка подобного представления – источник ряда сложных проблем, которые должны решаться системными функциями. Данный раздел посвящен обсуждению этих проблем. Предполагается, что читатель знаком с основными понятиями баз данных.

Архитектурные проблемы

Существует множество альтернатив распределенной обработки. Наиболее популярна в настоящее времяархитектура клиент-сервер [Orfali et al., 1994], когда множество машин-клиентов осуществляют доступ к одному серверу баз данных. В таких системах, которые можно определить как системы типа много-клиентов/один-сервер, проблемы управления базой данных решаются относительно просто, поскольку вся она хранится на одном сервере. Задачи, с которыми приходится здесь сталкиваться, – это управление буферами клиентов, кэширование данных и, возможно, блокировки. Управление данными реализуетсяцентрализованно на одном сервере.

Более распределенной и более гибкой является архитектура типа много-клиентов/много-серверов, когда база данных размещена на нескольких серверах, которым, для того чтобы вычислить результат пользовательского запроса или выполнить транзакцию, необходимо взаимодействовать друг с другом. Каждая клиентская машина имеет свой "домашний" сервер; ему она направляет пользовательские запросы. Взаимодействие серверов друг с другом прозрачно для пользователей. В большинстве существующих СУБД реализован один из этих двух типов архитектуры клиент-сервер.

В истинно распределенной СУБД клиентские и серверные машины не различаются. В идеале каждый узел может выступать и как клиент, и как сервер. Такие архитектуры, тип которых определяют как равный-к-равному (peer-to-peer), требуют сложных протоколов управления данными, распределенными по нескольким узлам. Предложение продуктов такого вида задерживается из-за сложности необходимого для их реализации программного обеспечения.

Архитектуры параллельных систем варьируются между двумя крайними точками, называемымиархитектура без разделяемых ресурсов (shared-nothing) и архитектура с разделяемой памятью (shared-memory). Промежуточную позицию занимает архитектура с разделяемыми дисками (shared-disk).

При использовании подхода без разделяемых ресурсов каждый процессор имеет мнопольный доступ к собственной оперативной памяти и к набору дисков. Таким образом, каждый узел можно рассматривать как локальную машину (со своей базой данной и своим программным обеспечением) в распределенной системе баз данных. Разница между параллельными СУБД без разделяемых ресурсов и распределенными СУБД, по существу, сводится к различию платформ реализации; поэтому большинство решений, разработанных для распределенных баз данных, можно с успехом применять и для параллельных баз данных этого типа. Архитектуры без разделяемых ресурсов обладают тремя важнейшими преимуществами: низкие затраты, расширяемость, высокая доступность. Наиболее существенные характерные для них проблемы – сложность реализации и (потенциальные) трудности соблюдения балансировки нагрузки.

Примерами систем параллельных баз данных являются продукты DBC (Teradata) и NonStop-SQL (Tandem), а также ряд прототипов, таких как BUBBA [Boral et al., 1990], EDS [EDS, 1990], GAMMA [DeWitt et al., 1990], GRACE [Fushimi et al., 1986], PRISMA [Apers et al., 1992] и ARBRE [Lorie et al., 1989].

Подход c разделяемой памятью заключается в том, что каждый процессор посредством быстрых линий связи (высокоскоростных шин или координатных коммутаторов) соединен со всеми модулями памяти и дисковыми устройствами. Существуют несколько типов мэйнфреймов, следующих этому подходу: IBM3090, DPS8 (Bull), а также симметричные многопроцессорные системы типа Sequent и Encore. Две сильные стороны систем с разделяемой памятью – простота и хорошая балансировка нагрузки. Три наиболее существенные проблемы, связанные с этим подходом, – стоимость, ограниченная масштабируемость, невысокая надежность.

К системам параллельных баз данных с разделяемой памятью относятся XPRS [Stonebraker et al., 1988], DBS3 [Bergsten et al., 1991] и Volcano [Graefe, 1990], а также перенесенные на мультипроцессоры с разделяемой памятью наиболее известные промышленные СУБД. Первым примером такой системы была реализация СУБД DB2 на IBM3090 с шестью процессорами. Во всех известных на сегодня коммерческих продуктах (таких как Ingres и Oracle) используется только межзапросный (но не внутризапросный) параллелизм.

В системах с разделяемыми дисками каждый процессор имеет доступ к любому дисковому устройству посредством специальных соединений и монопольный доступ к своей собственной оперативной памяти. Таким образом, каждый процессор может прочитать любые страницы базы данных и запомнить их в своем кэше. Во избежание конфликтов при доступе к одним и тем же страницам необходимы механизмы глобального блокирования и протоколы согласования кэшей. Подход, основанный на разделении дисков, имеет следующие преимущества: низкие затраты, масштабируемость, хорошая балансировка нагрузки, высокая доступность, простота миграции с однопроцессорных систем. В то же время с ними связаны и определенные трудности: сложность системы, потенциальные проблемы производительности.

Примеры параллельных СУБД с разделяемыми дисками: продукт IMS/VS Data Sharing (IBM), а также продукты VAX DBMS и Rdb компании DEC. Реализация Oracle на компьютерах VAXcluster (DEC) и NCUBE также использует разделение дисков, поскольку этот подход требует минимальных расширений в ядре СУБД. Отметим, что во всех этих системах применяется только межзапросный параллелизм.

Обработка и оптимизация запросов

Обработка запроса (query processing) – это процесс трансляции декларативного определения запроса в операции манипулирования данными низкого уровня. Стандартным языком запросов, поддерживаемым современными СУБД, является SQL. Оптимизация запроса (query optimization) – это процедура выбора "наилучшей" стратегии выполнения запроса из множества альтернатив.

Для централизованной СУБД весь процесс состоит обычно из двух шагов: декомпозиции запроса (query decomposition) и оптимизации запроса. Декомпозиция запроса – это трансляция его с языка SQL в выражение реляционной алгебры. В ходе декомпозиции запрос подвергается семантическому анализу; при этом некорректные запросы отвергаются, а корректные упрощаются. Упрощение заключается, в частности, в исключении избыточных предикатов, которые могли быть привнесены за счет использования представлений, а также исходя из ограничений безопасности и семантической целостности. Упрощенный запрос преобразуется в алгебраическую форму.

Для заданного SQL-запроса существует более чем одно алгебраическое представление, причем некоторые из них могут быть "лучше" других. "Качество" алгебраического выражения определяется исходя из объема затрат, необходимых для его вычисления. Традиционная процедура состоит в том, чтобы сначала оттранслировать SQL-запрос в какое-нибудь выражение, а затем, применяя правила эквивалентных алгебраических преобразований, получать из него другие алгебраические преобразования, пока не будет найдено "наилучшее". При поиске "наилучшего" выражения используется функция стоимости, в соответствии с которой вычисляется сумма затрат, необходимых для выполнения запроса. Этот процесс и называется оптимизацией запросов.

В распределенной СУБД между шагами декомпозиции и оптимизации запроса включаются еще два действия: локализация данных (data localization) и глобальная оптимизация запроса (global query optimization).

Исходной информацией для локализации данных служит исходное алгебраическое выражение, полученное на шаге декомпозиции запроса. В исходном алгебраическом выражении фигурируют глобальные отношения без учета их фрагментации или распределения. Основная роль локализации данных заключается в том, чтобы локализовать участвующие в запросе данные, используя информацию об их распределении. На этом шаге выявляются фрагменты, реально участвующие в запросе, и запрос преобразуется к форме, где операции применяются уже не к глобальным отношениям, а к фрагментам. Как отмечалось выше, правила фрагментации выражаются посредством реляционных операций (селекции для горизонтальной фрагментации и проекции для вертикальной). Распределенные отношения реконструируются путем применения инверсии правил фрагментации. Это называется программой локализации. Программа локализации для горизонтально (вертикально) фрагментированного отношения представляет собой объединение (union) (соединение (join)) соответствующих фрагментов. Таким образом, на шаге локализации данных каждое глобальное отношение запрос заменяется его программой локализации, а затем результирующий фрагментный запрос упрощается и реструктурируется с целью получения другого "хорошего" запроса. Для упрощения и реструктуризации могут использоваться те же правила, что и на шаге декомпозиции. Как и на шаге декомпозиции, окончательный запрос над фрагментами может быть еще далек от оптимального; данный процесс лишь исключает "плохие" алгебраические запросы.

Исходной информацией для третьего шага является фрагментный запрос, т. е. алгебраическое выражение над фрагментами. Цель глобальной оптимизации – найти стратегию выполнения запроса, близкую к оптимальной. Напомним, что нахождение оптимальной стратегии – вычислительно трудноразрешимая задача. Стратегию выполнения распределенного запроса можно выразить в терминах операций реляционной алгебры и коммуникационных примитивов (операций send/receive), используемых для пересылки данных между узлами. На предыдущих шагах запрос уже был в определенной мере оптимизирован, в частности, за счет удаления избыточных выражений. Однако проведенная оптимизация не зависела от характеристик фрагментов, например их мощности. Кроме того, на предыдущих шагах еще не учитывались коммуникационные операции. Путем изменения порядка операций внутри одного фрагментного запроса можно получить много эквивалентных планов его выполнения. Оптимизация запроса заключается в нахождении "наилучшего" плана из множества возможных планов, исследуемых оптимизатором1).

Оптимизатор запросов обычно представляется в виде трех компонентов: пространство поиска, модель стоимости и стратегия поиска. Пространство поиска – это множество альтернативных планов выполнения исходного запроса. Эти планы эквивалентны в том смысле, что они дают один и тот же результат, но различаются порядком и способами выполнения отдельных операций. Модель стоимости – это способ оценить стоимость данного плана выполнения запроса. Для достижения точности модель стоимости должна основываться на точных знаниях о среде параллельных вычислений. Стратегия поиска – это способ обхода пространства поиска и выбора наилучшего плана. Об этом говорит сайт https://intellect.icu . Она определяет, какие планы и в каком порядке следует выбирать и оценивать.

В распределенной среде функция стоимости, часто определяемая в

продолжение следует...

Продолжение:


Часть 1 Распределенные и параллельные системы баз данных
Часть 2 Исследовательские проблемы - Распределенные и параллельные системы баз данных
Часть 3 Объект и предмет исследования. - Распределенные и параллельные системы баз
Часть 4 Анализ методов моделирования РБД. - Распределенные и параллельные системы баз

См.также

  • Облачные базы данных
  • Распределенные вычисления

А как ты думаешь, при улучшении распределенные и параллельные системы баз данных, будет лучше нам? Надеюсь, что теперь ты понял что такое распределенные и параллельные системы баз данных и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Базы данных, знаний и хранилища данных. Big data, СУБД и SQL и noSQL

Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.

создано: 2014-08-25
обновлено: 2024-11-14
1039



Рейтиг 10 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Базы данных, знаний и хранилища данных. Big data, СУБД и SQL и noSQL

Термины: Базы данных, знаний и хранилища данных. Big data, СУБД и SQL и noSQL