Лекция
Привет, Вы узнаете о том , что такое big data, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое big data, парадигма mapreduce, mapreduce , настоятельно рекомендую прочитать все из категории Базы данных, знаний и хранилища данных. Big data, СУБД и SQL и noSQL.
Проблематику больших данных постараемся описывать с разных сторон: основные принципы работы с данными, инструменты, примеры решения практических задач. Отдельное внимание окажем теме машинного обучения.
Начинать надо от простого к сложному, поэтому первая статья – о принципах работы с большими данными и парадигме MapReduce.
Термин Big Data появился сравнительно недавно. Google Trends показывает начало активного роста употребления словосочетания начиная с 2011 года (ссылка):
При этом уже сейчас термин не использует только ленивый. Особенно часто не по делу термин используют маркетологи. Так что же такое Big Data на самом деле? Раз уж я решил системно изложить и освятить вопрос – необходимо определиться с понятием.
В своей практике я встречался с разными определениями:
· Big Data – это когда данных больше, чем 100Гб (500Гб, 1ТБ, кому что нравится)
· Big Data – это такие данные, которые невозможно обрабатывать в Excel
· Big Data – это такие данные, которые невозможно обработать на одном компьютере
И даже такие:
· Вig Data – это вообще любые данные.
· Big Data не существует, ее придумали маркетологи.
В этом цикле статей я буду придерживаться определения с wikipedia:
Большие данные (англ. big data) — серия подходов, инструментов и методов обработки структурированных и неструктурированных данных огромных объемов и значительного многообразия для получения воспринимаемых человеком результатов, эффективных в условиях непрерывного прироста, распределения по многочисленным узлам вычислительной сети, сформировавшихся в конце 2000-х годов, альтернативных традиционным системам управления базами данных и решениям класса Business Intelligence.
Таким образом под Big Data я буду понимать не какой-то конкретный объем данных и даже не сами данные, а методы их обработки, которые позволяют распределено обрабатывать информацию. Эти методы можно применить как к огромным массивам данных (таким как содержание всех страниц в интернете), так и к маленьким (таким как содержимое этой статьи).
Приведу несколько примеров того, что может быть источником данных, для которых необходимы методы работы с большими данными:
Количество источников данных стремительно растет, а значит технологии их обработки становятся все более востребованными.
Исходя из определения Big Data, можно сформулировать основные принципы работы с такими данными:
1. Горизонтальная масштабируемость. Поскольку данных может быть сколь угодно много – любая система, которая подразумевает обработку больших данных, должна быть расширяемой. В 2 раза вырос объем данных – в 2 раза увеличили количество железа в кластере и все продолжило работать.
2. Об этом говорит сайт https://intellect.icu . Отказоустойчивость. Принцип горизонтальной масштабируемости подразумевает, что машин в кластере может быть много. Например, Hadoop-кластер Yahoo имеет более 42000 машин (по этой ссылке можно посмотреть размеры кластера в разных организациях). Это означает, что часть этих машин будет гарантированно выходить из строя. Методы работы с большими данными должны учитывать возможность таких сбоев и переживать их без каких-либо значимых последствий.
3. Локальность данных. В больших распределенных системах данные распределены по большому количеству машин. Если данные физически находятся на одном сервере, а обрабатываются на другом – расходы на передачу данных могут превысить расходы на саму обработку. Поэтому одним из важнейших принципов проектирования BigData-решений является принцип локальности данных – по возможности обрабатываем данные на той же машине, на которой их храним.
Все современные средства работы с большими данными так или иначе следуют этим трем принципам. Для того, чтобы им следовать – необходимо придумывать какие-то методы, способы и парадигмы разработки средств разработки данных. Один из самых классических методов я разберу в сегодняшней статье.
Про MapReduce вы возможно уже читали (раз, два, три), но раз уж цикл статей претендует на системное изложение вопросов Big Data – без MapReduce в первой статье не обойтись J
MapReduce – это модель распределенной обработки данных, предложенная компанией Google для обработки больших объемов данных на компьютерных кластерах. MapReduce неплохо иллюстрируется следующей картинкой (взято по ссылке):
MapReduce предполагает, что данные организованы в виде некоторых записей. Обработка данных происходит в 3 стадии:
1. Стадия Map. На этой стадии данные предобрабатываются при помощи функции map(), которую определяет пользователь. Работа этой стадии заключается в предобработке и фильтрации данных. Работа очень похожа на операцию map в функциональных языках программирования – пользовательская функция применяется к каждой входной записи.
Функция map() примененная к одной входной записи и выдает множество пар ключ-значение. Множество – т.е. может выдать только одну запись, может не выдать ничего, а может выдать несколько пар ключ-значение. Что будет находится в ключе и в значении – решать пользователю, но ключ – очень важная вещь, так как данные с одним ключом в будущем попадут в один экземпляр функции reduce.
2. Стадия Shuffle. Проходит незаметно для пользователя. В этой стадии вывод функции map «разбирается по корзинам» – каждая корзина соответствует одному ключу вывода стадии map. В дальнейшем эти корзины послужат входом для reduce.
3. Стадия Reduce. Каждая «корзина» со значениями, сформированная на стадии shuffle, попадает на вход функции reduce().
Функция reduce задается пользователем и вычисляет финальный результат для отдельной «корзины». Множество всех значений, возвращенных функцией reduce(), является финальным результатом MapReduce-задачи.
Несколько дополнительных фактов про MapReduce:
1) Все запуски функции map работают независимо и могут работать параллельно, в том числе на разных машинах кластера.
2) Все запуски функции reduce работают независимо и могут работать параллельно, в том числе на разных машинах кластера.
3) Shuffle внутри себя представляет параллельную сортировку, поэтому также может работать на разных машинах кластера. Пункты 1-3 позволяют выполнить принцип горизонтальной масштабируемости.
4) Функция map, как правило, применяется на той же машине, на которой хранятся данные – это позволяет снизить передачу данных по сети (принцип локальности данных).
5) MapReduce – это всегда полное сканирование данных, никаких индексов нет. Это означает, что MapReduce плохо применим, когда ответ требуется очень быстро.
Начнем с классической задачи – Word Count. Задача формулируется следующим образом: имеется большой корпус документов. Задача – для каждого слова, хотя бы один раз встречающегося в корпусе, посчитать суммарное количество раз, которое оно встретилось в корпусе.
Решение:
Раз имеем большой корпус документов – пусть один документ будет одной входной записью для MapRreduce–задачи. В MapReduce мы можем только задавать пользовательские функции, что мы и сделаем (будем использовать python-like псевдокод):
def map(doc): for word in doc: yield word, 1 |
def reduce(word, values): yield word, sum(values) |
Функция map превращает входной документ в набор пар (слово, 1), shuffle прозрачно для нас превращает это в пары (слово, [1,1,1,1,1,1]), reduce суммирует эти единички, возвращая финальный ответ для слова.
Второй пример взят из реальной практики Data-Centric Alliance.
Задача: имеется csv-лог рекламной системы вида:
,,,,,
11111,RU,Moscow,2,4,0.3 22222,RU,Voronezh,2,3,0.2 13413,UA,Kiev,4,11,0.7 …
Необходимо рассчитать среднюю стоимость показа рекламы по городам России.
Решение:
def map(record): user_id, country, city, campaign_id, creative_id, payment = record.split(",") payment=float(payment) if country == "RU": yield city, payment |
def reduce(city, payments): yield city, sum(payments)/len(payments) |
Функция map проверяет, нужна ли нам данная запись – и если нужна, оставляет только нужную информацию (город и размер платежа). Функция reduce вычисляет финальный ответ по городу, имея список всех платежей в этом городе.
В статье мы рассмотрели несколько вводных моментов про большие данные:
· Что такое Big Data и откуда берется;
· Каким основным принципам следуют все средства и парадигмы работы с большими данными;
· Рассмотрели парадигму MapReduce и разобрали несколько задач, в которой она может быть применена.
Первая статья была больше теоретической, во второй статье мы перейдем к практике, рассмотрим Hadoop – одну из самых известных технологий для работы с большими данными и покажем, как запускать MapReduce-задачи на Hadoop.
В последующих статьях цикла мы рассмотрим более сложные задачи, решаемые при помощи MapReduce, расскажем об ограничениях MapReduce и о том, какими инструментами и техниками можно обходить эти ограничения.
Спасибо за внимание, готовы ответить на ваши вопросы.
Прочтение данной статьи про big data позволяет сделать вывод о значимости данной информации для обеспечения качества и оптимальности процессов. Надеюсь, что теперь ты понял что такое big data, парадигма mapreduce, mapreduce и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Базы данных, знаний и хранилища данных. Big data, СУБД и SQL и noSQL
Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.
Комментарии
Оставить комментарий
Базы данных, знаний и хранилища данных. Big data, СУБД и SQL и noSQL
Термины: Базы данных, знаний и хранилища данных. Big data, СУБД и SQL и noSQL