Лекция
Привет, мой друг, тебе интересно узнать все про формулы сокращенного умножения, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое формулы сокращенного умножения , настоятельно рекомендую прочитать все из категории Арифметика.
При расчете алгебраических многочленов для упрощения вычислений используются формулы сокращенного умножения . Всего таких формул семь. Их все необходимо знать наизусть.
Следует также помнить, что вместо a и b в формулах могут стоять как числа, так и любые другие алгебраические многочлены.
Разность квадратов двух чисел равна произведению разности этих чисел и их суммы.
Примеры:
Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа.
Обратите внимание, что с помощью этой формулы сокращенного умножения легко находить квадраты больших чисел, не используя калькулятор или умножение в столбик. Поясним на примере:
Найти .
Помните, что формула квадрат суммы также справедлива для любых алгебраических многочленов.
Предостережение!
Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе плюс квадрат второго числа.
Также стоит запомнить весьма полезное преобразование:
Формула выше доказывается простым раскрытием скобок:
Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого на квадрат второго плюс куб второго.
Запомнить эту «страшную» на вид формулу довольно просто.
Предостережение!
Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго.
Запоминается эта формула как и предыдущая, но только с учетом чередования знаков «+» и «-». Перед первым членом a3 стоит «+» (по правилам математики мы его не пишем). Значит, перед следующим членом будет стоять «-», затем опять «+» и т.д.
Сумма кубов равна произведению суммы двух чисел на неполный квадрат разности.
Сумма кубов - это произведение двух скобок.
Разность кубов равна произведению разности двух чисел на неполный квадрат суммы.
Будьте внимательны при записи знаков.
Следует помнить, что все формулы, приведенные выше, используется также и справа налево.
Многие примеры в учебниках рассчитаны на то, что вы с помощью формул соберете многочлен обратно.
Примеры:
Формулы сокращенного умножения применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.
Цель использования формул сокращенного умножения - быстрое и краткое умножение и возведение выражений в степень. Однако, они приментюся не только для этого . Они широко применятся при сокращении выражений, сокращении дробей, разложении многочленов на множители.
Главной целью их применения развития умения абстрактного разбиение (синтеза и анализа) информации, развитие абстрактного и критического мышления
Если я не полностью рассказал про формулы сокращенного умножения? Напиши в комментариях Надеюсь, что теперь ты понял что такое формулы сокращенного умножения и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Арифметика
Из статьи мы узнали кратко, но содержательно про формулы сокращенного умножения
Комментарии
Оставить комментарий
Арифметика
Термины: Арифметика