Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Моделирование случайной величины с заданным законом распределения, пример кратко

Лекция



Привет, сегодня поговорим про моделирование случайной величины с заданным законом распределения, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое моделирование случайной величины с заданным законом распределения, моделирование случайной величины, метод ступенчатой аппроксимации, метод усечения, метод взятия обратной функции , настоятельно рекомендую прочитать все из категории Моделирование и Моделирование систем.

Большей информативностью, по сравнению с такими статистическими характеристиками как математическое ожидание, дисперсия, для инженера обладает закон распределения вероятности случайной величины X. Представим, что X принимает случайные значения из некоторого диапазона. Например, X — диаметр вытачиваемой детали. Диаметр может отклоняться от запланированного идеального значения под влиянием различных факторов, которые нельзя учесть, поэтому он является случайной слабо предсказуемой величиной. Но в результате длительного наблюдения за выпускаемыми деталями можно отметить, сколько деталей из 1000 имели диаметр X1 (обозначим NX1), сколько деталей имели диаметр X2 (обозначим NX2) и так далее. В итоге можно построить гистограмму частости диаметров, откладывая для X1 величину NX1/1000, для X2 величину NX2/1000 и так далее. (Обратите внимание, если быть точным, NX1 — это число деталей, диаметр которых не просто равенX1, а находится в диапазоне от X1 – Δ/2 до X1 + Δ/2, где Δ = X1X2). Важно, что сумма всех частостей будет равна 1 (суммарная площадь гистограммы неизменна). Если X меняется непрерывно, опытов проведено очень много, то в пределе N –> ∞ гистограмма превращается в график распределения вероятности случайной величины. На рис. 24.1, а показан пример гистограммы дискретного распределения, а на рис. 24.1, б показан вариант непрерывного распределения случайной величины.

Моделирование случайной величины с заданным законом распределения, пример

Рис. 24.1. Сравнение дискретного и непрерывного законов распределения случайной величины

В нашем примере закон распределения вероятности случайной величины показывает насколько вероятно то или иное значение диаметра выпускаемых деталей. Случайной величиной является диаметр детали.

В производстве и технике часто такие законы распределения заданы по условию задачи. Наша задача сейчас состоит в том, чтобы научиться имитировать появление конкретных случайных событий согласно вероятностям такого распределения.

метод ступенчатой аппроксимации

Так как законы распределения вероятности событий могут быть различной формы, а не только равновероятными, то необходимо уметь превращать равномерный ГСЧ в генератор случайных чисел с заданным произвольным законом распределения. На рис. 21.3 это соответствует двум первым блокам метода статистического моделирования. Для этого непрерывный закон распределения вероятности события дискретизируем, превратим в дискретный.

Обозначим: hi — высота i-го столбца, f(x) — распределение вероятности (показывает насколько вероятно некоторое событие x). Об этом говорит сайт https://intellect.icu . Значение hi операцией нормировки необходимо перевести в единицы вероятности появления значений x из интервала xi < xxi + 1: Pi = hi/(h1 + h2 + … + hi + … + hn).

Операция нормировки обеспечивает сумму вероятностей всех n событий равную 1:

Моделирование случайной величины с заданным законом распределения, пример

На рис. 24.2 показаны графически переход от произвольного непрерывного закона распределения к дискретному (рис. 24.2, а), отображение получаемых вероятностей на интервал rрр[0; 1] и генерация случайных событий с использованием эталонного равномерно распределенного ГСЧ (рис. 24.2, б).

Моделирование случайной величины с заданным законом распределения, пример

Рис. 24.2. Иллюстрация метода ступенчатой аппроксимации

Заметим, что внутри интервала xi < xxi + 1 значение x теперь не различимо, одинаково. Метод огрубляет изначальную постановку задачи, переходя от непрерывного закона распределения к дискретному. Поэтому следует учитывать количество разбиений n из условий точности представления.

На рис. 24.3 показан фрагмент алгоритма, реализующего описанный метод. Алгоритм генерирует случайное число, равномерно распределенное от 0 до 1. Затем, сравнивая границы отрезков, расположенных на интервале от 0 до 1, представляющих собой вероятности P выпадения тех или иных случайных величин X, определяет в цикле, какое из случайных событий i в результате этого выпадает.

Моделирование случайной величины с заданным законом распределения, пример

Рис. 24.3. Блок-схема алгоритма, реализующего метод ступенчатой аппроксимации

Метод используется в случае, когда функция задана аналитически (в виде формулы). График функции вписывают в прямоугольник (см. рис. 24.4). На ось Y подают случайное равномерно распределенное число из ГСЧ. На ось X подают случайное равномерно распределенное число из ГСЧ. Если точка в пересечении этих двух координат лежит ниже кривой плотности вероятности, то событиеX произошло, иначе нет. метод усечения Заметим, что внутри интервала xi < xxi + 1 значение x теперь не различимо, одинаково. Метод огрубляет изначальную постановку задачи, переходя от непрерывного закона распределения к дискретному. Поэтому следует учитывать количество разбиений n из условий точности представления.

Недостатком метода является то, что те точки, которые оказались выше кривой распределения плотности вероятности, отбрасываются как ненужные, и время, затраченное на их вычисление, оказывается напрасным. Метод применим только для аналитических функций плотности вероятности.

Моделирование случайной величины с заданным законом распределения, пример

Рис. 24.4. Иллюстрация метода усечения

На рис. 24.5 показан алгоритм, реализующий метод усечения. В цикле генерируется два случайных числа из диапазона от 0 до 1. Числа масштабируются в шкалу X и Y и проверяется попадание точки со сгенерированными координатами под график заданной функции Y = f(X). Если точка находится под графиком функции, то событие X произошло с вероятностью Y, иначе точка отбрасывается.

Моделирование случайной величины с заданным законом распределения, пример

Рис. 24.5. Блок-схема алгоритма, реализующего метод усечения

метод взятия обратной функции

Допустим, что нам задан интегральный закон распределения вероятности F(x), где f(x) — функция плотности вероятности и

Моделирование случайной величины с заданным законом распределения, пример

Тогда достаточно разыграть случайное число, равномерно распределенное в интервале от 0 до 1. Поскольку функция F тоже изменяется в данном интервале, то случайное событие x можно определить взятием обратной функции по графику или аналитически: x = F–1(r). Здесь r — число, генерируемое эталонным ГСЧ в интервале от 0 до 1, x1 — сгенерированная в итоге случайная величина. Графически суть метода изображена на рис. 24.6.

Моделирование случайной величины с заданным законом распределения, пример

Рис. 24.6. Иллюстрация метода обратной функции для генерации случайных событий x, значения которых распределены непрерывно.

На рисунке показаны графики плотности вероятности и интегральной плотности вероятности от х

Данным методом особенно удобно пользоваться в случае, когда интегральный закон распределения вероятности задан аналитически и возможно аналитическое взятие обратной функции от него, как это и показано на следующем примере.

Пример 1. Примем к рассмотрению экспоненциальный закон распределения вероятности случайных событий f(x) = λ · eλx. Тогда интегральный закон распределения плотности вероятности имеет вид: F(x) = 1 – eλx.

Так как r и F в данном методе предполагаются аналогичными и расположены в одном интервале, то, заменяя F на случайное число r, имеем: r = 1 – eλx.

Выражая искомую величину x из этого выражения (то есть, обращая функцию exp()), получаем:x = –1/λ · ln(1 – r).

Так как в статическом смысле (1 – r) и r — это одно и тоже, то x = –1/λ · ln(r).

На рис. 24.7 показан фрагмент алгоритма, реализующего метод обратной функции для экспоненциального закона.

Моделирование случайной величины с заданным законом распределения, пример

Рис. 24.7. Фрагмент блок-схемы алгоритма, реализующей метод обратной функции для экспоненциального закона

Вау!! 😲 Ты еще не читал? Это зря!

Надеюсь, эта статья об увлекательном мире моделирование случайной величины с заданным законом распределения, была вам интересна и не так сложна для восприятия как могло показаться. Желаю вам бесконечной удачи в ваших начинаниях, будьте свободными от ограничений восприятия и позвольте себе делать больше активности в изученном направлени . Надеюсь, что теперь ты понял что такое моделирование случайной величины с заданным законом распределения, моделирование случайной величины, метод ступенчатой аппроксимации, метод усечения, метод взятия обратной функции и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Моделирование и Моделирование систем

Из статьи мы узнали кратко, но содержательно про моделирование случайной величины с заданным законом распределения
создано: 2015-12-19
обновлено: 2021-03-13
132661



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей



Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Моделирование и Моделирование систем

Термины: Моделирование и Моделирование систем