Лекция
Сразу хочу сказать, что здесь никакой воды про поле в физике, и только нужная информация. Для того чтобы лучше понимать что такое поле в физике, фундаментальные взаимодействия, гравитация , настоятельно рекомендую прочитать все из категории Введение в физику, основы.
Поле в физике — физический объект, классически описываемый математическим скалярным, векторным, тензорным, спинорным полем (или некоторой совокупностью таких математических полей), подчиняющимся динамическим уравнениям (уравнениям движения, называемым в этом случае уравнениями поля или полевыми уравнениями — обычно это дифференциальные уравнения в частных производных). Другими словами, физическое поле представляется некоторой динамической физической величиной (называемой полевой переменной ), определенной во всех точках пространства (и принимающей вообще говоря разные значения в разных точках пространства, к тому же меняющейся со временем ).[источник не указан 293 дня]
В квантовой теории поля — полевая переменная может рассматриваться формально подобно тому, как в обычной квантовой механике рассматривается пространственная координата, и полевой переменной сопоставляется квантовый оператор соответствующего названия.
Полевая парадигма, представляющая всю физическую реальность на фундаментальном уровне сводящейся к небольшому количеству взаимодействующих (квантованных) полей, является не только одной из важнейших в современной физике, но, пожалуй, безусловно главенствующей .
Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы.
Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда — величина, называемая напряженностью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).
Также полем в физике называют физическую величину, рассматриваемую как зависящую от места: как полный набор, вообще говоря, разных значений этой величины для всех точек некоторого протяженного непрерывного тела — сплошной среды, описывающий в своей совокупности состояние или движение этого протяженного тела[10]. Примерами таких полей может быть:
Динамика таких полей также описывается дифференциальными уравнениями в частных производных, и исторически первыми, начиная с XVIII века, в физике рассматривались именно такие поля.
Современная концепция физического поля выросла из идеи электромагнитного поля, впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем, математически же последовательно реализованной Максвеллом — изначально с использованием механической модели гипотетической сплошной среды — эфира, но затем вышедшей за рамки использования механической модели.
Среди полей в физике выделяют так называемые фундаментальные. Это поля, которые, согласно с полевой парадигмой современной физики, составляют основу физической картины мира, все остальные поля и взаимодействия из них выводятся. Включают два основных класса взаимодействующих друг с другом полей:
Существуют теории (например, теория струн, различные другие теории объединения), в которых роль фундаментальных полей занимают несколько другие, еще более фундаментальные с точки зрения этих теорий, поля или объекты (а нынешние фундаментальные поля появляются или должны появляться в этих теориях в некотором приближении, как "феноменологическое" следствие). Однако пока такие теории не являются достаточно подтвержденными или общепринятыми.
Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.
На сегодня достоверно известно существование четырех фундаментальных взаимодействий (не считая поля Хиггса):
При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.
Ведутся поиски других типов фундаментальных взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока какого-либо другого типа фундаментального взаимодействия не обнаружено (см. Пятая сила).
В теориях Великого объединения предполагается существование электроядерного взаимодействия. Возможно, нарушение CP-инвариантности вызывается сверхслабым взаимодействием.
Единственной гипотезой о количестве фундаментальных физических взаимодействий — почему в природе именно то количество взаимодействий, которое предполагают существующими — была высказана лишь относительно недавно в МГУ. Предполагается, что количество фундаментальных взаимодействий зависит от вида коэффициента затухания в рассматриваемых уравнениях колебаний. При этом некоммутативная структура этого коэффициента свидетельствует в пользу существования поля Хиггса в качестве фундаментального взаимодействия .
Исторически среди фундаментальных полей сначала были открыты (именно в качестве физических полей[11]) поля, ответственные за электромагнитное (электрическое имагнитное поля, затем объединенные в электромагнитное поле), и гравитационное взаимодействие. Эти поля были открыты и достаточно детально изучены уже в классической физике. Вначале эти поля (в рамках ньютоновской теории тяготения, электростатики и магнитостатики) выглядели для большинства физиков скорее как формальные математические объекты, вводимые для формального же удобства, а не как полноценная физическая реальность, несмотря на попытки более глубокого физического осмысления, остававшиеся однако довольно туманными или не приносящими слишком существенных плодов[12]. Но начиная с Фарадея и Максвелла подход к полю (в данном случае — к электромагнитному полю) как к вполне содержательной физической реальности стал применяться систематически и очень плодотворно, включая и существенный прорыв в математическом оформлении этих идей.
Поля, соответствующие слабому взаимодействию и сильному взаимодействию, (играющие важную роль в ядерной физике ядерных и физике частиц; последнее — в числе прочего в объяснении ядерных сил) открыты гораздо позднее, поскольку практически проявляются лишь в физике атомного ядра и частиц, при таких энергиях и расстояниях, которые в принципе относятся к области квантовых теорий.
Тем не менее, в принципе (несмотря на то, что не для всех из них это легко непосредственно обнаружить), все четыре упомянутые поля проявляют себя как посредники при взаимодействии заряженных (различными видами зарядов) тел (частиц), перенося это взаимодействие с конечной скоростью (скоростью света), при этом интенсивность (сила) взаимодействия определяется, кроме положения и движения тел, их зарядами: массой (гравитационным зарядом) для гравитационного поля,электрическим зарядом для электромагнитного и т. Об этом говорит сайт https://intellect.icu . д.
Еще одним решительным моментом в завоевании полевой концепцией признания физиков стало экспериментальное подтверждение теории Максвелла в 1887 годуГенрихом Герцем, получившим прямое экспериментальное доказательство существования предсказанных Максвеллом электромагнитных волн (что, кроме прочего, позволило в итоге присоединить оптику, бывшую до этого независимой областью физики, к электромагнитной теории, а это было очень существенным продвижением в направлении увеличения внутренней связности физики).
Постепенно оказывалось, что поле обладает практически всеми атрибутами полноценной физической реальности, включая способность переносить энергию и импульс, и даже в определенных условиях обладать эффективной массой[13].
С другой стороны, по мере развития квантовой механики, становилось все более ясно, что вещество (частицы) обладает свойствами, которые теоретически присущи именно полям.
После создания квантовой механики и достаточно глубокого развития квантовых представлений, стало очевидно, что вся материя, в том числе и вещество, описываетсяквантованными полями: отдельными фундаментальными полями (как электрон) или их коллективными возбуждениями (как протон, составленный из трех кварков иглюонного поля). Одиночными квантовыми возбуждениями фундаментальных полей и являются элементарные частицы. Фотоны, векторные бозоны, глюоны, гравитоны(пока не зафиксированные в качестве отдельных частиц), лептоны и кварки относятся к таким квантовым возбуждениям фундаментальных полей разного типа[14]. Были открыты и подробно исследованы полевые уравнения для свободных полей, их квантование, взаимодействие различных полей[15].
Таким образом, оказалось, что физическая картина мира может быть сведена в своем фундаменте к квантованным полям и их взаимодействию.
В какой-то мере, главным образом в рамках формализма интегрирования по траекториям и диаграмм Фейнмана, произошло и противоположное движение: поля стало можно в заметной мере представить как почти классические частицы (точнее — как суперпозицию бесконечного количества движущихся по всем мыслимым траекториям почти классических частиц), а взаимодействие полей друг с другом — как рождение и поглощение частицами друг друга (тоже с суперпозицией всех мыслимых вариантов такового). И хотя этот подход очень красив, удобен и позволяет во многом психологически вернуться представлению о частице как о старой доброй классической частице, имеющей вполне определенную траекторию, он, тем не менее, не может отменить полевой взгляд на вещи и даже не является полностью симметричной альтернативой ему (а поэтому все же ближе к красивому, психологически и практически удобному, но все же всего лишь формальному приему, чем к полностью самостоятельной концепции). Дело тут в двух ключевых моментах:
Таким образом, можно заключить, что подход интегрирования по траекториям есть хотя и очень психологически удобная (ведь, скажем, точечная частица с тремя степенями свободы гораздо проще, чем бесконечномерное поле, которое ее описывает) и доказавшая практическую продуктивность, но все же лишь некаяпереформулировка, пусть и довольно радикальная, полевой концепции, а не ее альтернатива.
И хотя на словах на этом языке все выглядит очень «корпускулярно» (например: «взаимодействие заряженных частиц объясняются обменом другой частицей — переносчиком взаимодействия» или «взаимное отталкивание двух электронов обусловлено обменом между ними виртуальным фотоном»), однако за этим стоят такие типично полевые реальности, как распространение волн, пусть и достаточно хорошо спрятанные ради создания эффективной схемы вычислений, да во многом и давая дополнительные возможности качественного понимания.
В настоящее время (2012 год) фундаментальными бозонными (калибровочными) полями считаются несколько полей, связанных с электрослабым, сильным игравитационным взаимодействиями. К фундаментальным фермионным полям относятся спинорные поля нескольких «поколений» лептонов и кварков.
В рамках Стандартной модели в качестве фундаментальных выступают следующие поля
Каждому фундаментальному фермиону (каждому типу кварков и каждому типу лептонов) в рамках Стандартной модели соответствует свое поле, математически представляемое спинорным полем.
Эти поля в рамках стандартной модели являются калибровочными полями. Известны такие их типы:
Гипотетическими в широком смысле можно считать любые теоретические объекты (например, поля), которые описываются теориями, не содержащими внутренних противоречий, явно не противоречащими наблюдениям и способными в то же время дать наблюдаемые следствия, позволяющие сделать выбор в пользу этих теорий по сравнению с теми, которые приняты сейчас. На практике (чтобы отсечь необозримое количество потенциально возможных, но бесполезных теорий) применяют еще принцип фальсифицируемости. Ниже мы будем говорить (и это в целом соответствует обычному пониманию термина) в основном о гипотетичности в этом более узком и строгом смысле, подразумевающем обоснованность и фальсифицируемость предположения, которое мы называем гипотезой.
В теоретической физике рассматривается множество различных гипотетических полей, каждое из которых является принадлежностью вполне конкретной определенной теории (по своему типу и математическим свойствам эти поля могут быть совсем или почти такими же, как известные негипотетические поля, а могут более или менее сильно отличаться; в том и другом случае под их гипотетичностью имеется в виду то, что они пока не наблюдались в реальности, не были обнаружены экспериментально; в отношении части гипотетических полей может стоять вопрос о том, могут ли они наблюдаться в принципе, и даже могут ли они вообще существовать - например, если теория, в которой они присутствует, вдруг окажется внутренне противоречивой).
Вопрос о том, что следует считать критерием, позволяющим перенести некое конкретное поле из разряда гипотетических в разряд реальных, довольно тонок, поскольку подтверждения той или иной теории и реальности тех или иных объектов, в ней содержащихся, бывают зачастую более или менее косвенными. В этом случае дело сводится обычно к какому-то разумному соглашению научного сообщества (члены которого на более или менее детально сознают, о какой степени подтвержденности на самом деле идет речь).
Даже в теориях, считающихся достаточно хорошо подтвержденными, находится место гипотетическим полям (тут речь идет о том, что разные части теории проверены с разной степенью тщательности, и некоторые поля, играющие в них в принципе важную роль, пока не проявились в эксперименте достаточно определенно, то есть пока выглядят именно как гипотеза, придуманная для тех или иных теоретических целей, в то время как другие поля, фигурирующие в той же теории, изучены уже достаточно хорошо, чтобы говорить о них как о реальности).
Примером такого гипотетического поля является поле Хиггса, являющееся важным в Стандартной модели, остальные поля которой отнюдь не являются гипотетическими, а сама модель, пусть и с неизбежными оговорками, считается описывающей реальность (по крайней мере, до той степени, как реальность известна).
Существует множество теорий, содержащих поля, которые (пока) никогда не наблюдались, а иногда сами же эти теории дают такие оценки, что их гипотетические поля по-видимому (из-за слабости их проявления, следующей из самой теории) и не могут в принципе быть обнаружены в обозримом будущем (например, торсионное поле). Такие теории (если не содержат, кроме практически непроверяемых, еще и достаточного количества легче проверяемых следствий) не рассматриваются как представляющие практический интерес, если только не всплывет какой-то нетривиальный новый способ их проверки, позволяющий обойти очевидные ограничения. Иногда же (как, например, во многих альтернативных теориях гравитации — например, поле Дикке) вводятся такие гипотетические поля, о силе проявления которых сама теория вообще не может ничего сказать (например, константа связи этого поля с другими неизвестна и может быть как довольно большой, так и сколь угодно малой); с проверкой таких теорий обычно также не торопятся (поскольку таких теорий много, а своей полезности каждая из них ничем не доказала, и даже формальнонефальсифицируема), за исключением случаев, когда какая-то из них не начинает по каким-то причинам казаться перспективной для разрешения каких-то текущих затруднений (впрочем, от отсеивания теорий на основании нефальсифицируемости — особенно из-за неопределенных констант — тут иногда отказываются, т.к. серьезная добротная теория иногда может быть проверена в надежде, что ее эффект обнаружится, хотя гарантий этого и нет; особенно это верно, когда теорий-кандидатов вообще немного или некоторые из них выглядят особенно фундаментально интересными; также — в случаях, когда можно проверять теории широкого класса все сразу по известным параметрам, не тратя специальных усилий на проверку каждой в отдельности).
Следует также заметить, что принято называть гипотетическими лишь такие поля, которые совсем не имеют наблюдаемых проявлений (или имеют их недостаточно, как в случае с полем Хиггса). Если же существование физического поля твердо установлено по его наблюдаемым проявлениям, и речь идет лишь об улучшении его теоретического описания (например, о замене ньютоновского гравитационного поля на поле метрического тензора в ОТО), то говорить о том или другом как о гипотетических обычно не принято (хотя для ранней ситуации в ОТО можно было говорить о гипотетическом характере тензорной природы гравитационного поля).
В заключение упомянем о таких полях, сам тип которых достаточно необычен, т.е. теоретически вполне мыслим, но никакие поля подобных типов никогда не наблюдался на практике (а в некоторых случаях на ранних этапах развития их теории могли возникали и сомнения в ее непротиворечивости). К таким, прежде всего, следует отнеститахионные поля. Собственно, тахионные поля можно назвать скорее лишь потенциально гипотетическими (то есть не достигающими статуса обоснованного предположения), т.к. известные конкретные теории, в которых они играют более или менее существенную роль, например, теория струн,
Еще более экзотические (например, лоренц-неинвариантные — нарушающие принцип относительности) поля (при том, что абстрактно-теоретически вполне мыслимы) в современной физике можно отнести к стоящим уже достаточно далеко за рамками аргументированного предположения, то есть, строго говоря, их не рассматривают даже в качестве гипотетических[16].
↑ Показывать компактно
Пожалуйста, пиши комментарии, если ты обнаружил что-то неправильное или если ты желаешь поделиться дополнительной информацией про поле в физике Надеюсь, что теперь ты понял что такое поле в физике, фундаментальные взаимодействия, гравитация и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Введение в физику, основы
Комментарии
Оставить комментарий
Базовая физика
Термины: Базовая физика