Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Электрический ток в вакууме кратко

Лекция



Привет, Вы узнаете о том , что такое ток в вакууме , Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое ток в вакууме , настоятельно рекомендую прочитать все из категории Постоянный электрический ток.

Пустота – так переводится слово вакуум с латыни. Вакуумом принято называть пространство, в котором находится газ, давление которого в сотни, а может быть и в тысячи раз ниже атмосферного. На нашей планете вакуум создается искусственным путем, так как в естественных условиях такое состояние невозможно.

Виды вакуума

Как же ведет себя электрический ток в вакууме ? Как и любой ток, ток в вакууме появляется при наличии источника со свободными заряженными частицами.

Какими частицами создается электрический ток в вакууме? Чтобы создать вакуум в каком-либо закрытом сосуде, необходимо из него откачать газ. Делают это чаще всего с помощью вакуумного насоса. Это такое устройство, которое необходимо, чтобы откачать газ или пар до нужного для опыта давления.

Существует четыре вида вакуума: низкий вакуум, средний вакуум, высокий вакуум и сверхвысокий вакуум.

Электрический ток в вакууме

Рис. 1. Характеристики вакуума

Электрический ток в вакууме

Ток в вакууме не может существовать самостоятельно, так как вакуум является диэлектриком. В таком случае создать ток можно с помощью термоэлектронной эмиссии. Термоэлектронная эмиссия – явление, при котором электроны выходят из металлов при нагревании. Такие электроны называются термоэлектронами, а все тело – эмиттер.

На это явление впервые обратил внимание американский ученый Томас Эдисон в 1879 году.

Электрический ток в вакууме

Рис. 2. Термоэлектронная эмиссия

Эмиссия делится на:

  • вторичную электронную (выбивание быстрыми электронами);
  • термоэлектронную (испарение электронов с горячего катода);
  • фотоэлектронная (электроны выбиваются светом);
  • электронная (выбивание сильным полем).

Электроны смогут вылететь из металла, если будут обладать достаточной кинетической энергией. Она должна быть больше работы выхода электронов для данного металла. Об этом говорит сайт https://intellect.icu . Электроны, вылетающие из катода, образуют электронное облако. Половина из них возвращается в исходное положение. В равновесном состоянии число вылетевших электронов равно количеству вернувшихся. От температуры прямо пропорционально зависит плотность электронного облака (т.е. при повышении температуры, плотность облака становится больше).

При подключении электродов к источнику между ними возникает электрическое поле. Если положительный полюс источника тока соединить с анодом (холодным электродом), а отрицательный – с катодом (нагретым электродом), то напряженность электрического поля будет направлена к нагретому электроду.

Применение электрического тока в вакууме

Электрический ток в вакууме используется в различных электронных приборах. Одним из таких приборов является вакуумный диод

Электрический ток в вакууме

Рис. 3. Вакуумный диод

Состоит он из баллона, который включает 2 электрода – катод и анод.

Свойство электронных пучков

В технике очень важное значение имеет использование так называемых электронных пучков.

Определение. Электронный пучок – поток электронов, длина которого много больше его ширины. Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка) (рис. 3).

Электрический ток в вакууме

Рис. 3. Электронная пушка

Электронные пучки обладают рядом ключевых свойств:

В результате наличия большой кинетической энергии они имеют тепловое воздействие на материал, в который врезаются. Данное свойство применяется в электронной сварке. Электронная сварка необходима в тех случаях, когда важно сохранение чистоты материалов, например, при сваривании полупроводников.

- При столкновении с металлами электронные пучки, замедляясь, излучают рентгеновское излучение, применяемое в медицине и технике (рис. 4).

Электрический ток в вакууме

Рис. 4. Снимок, сделанный при помощи рентгеновского излучения

- При попадании электронного пучка на некоторые вещества, называющиеся люминофорами, происходит свечение, что позволяет создавать экраны, помогающие следить за перемещением пучка, конечно же, невидимого невооруженным глазом.

- Возможность управлять движением пучков с помощью электрических и магнитных полей.

Следует отметить, что температура, при которой можно добиться термоэлектронной эмиссии, не может превышать той температуры, при которой идет разрушение структуры металла.

На первых порах Эдисон использовал следующую конструкцию для получения тока в вакууме. В вакуумную трубку с одной стороны помещался проводник, включенный в цепь, а с другой стороны – положительно заряженный электрод (см. рис. 5):

Электрический ток в вакууме

Рис. 5

В результате прохождения тока по проводнику он начинает нагреваться, эмиссируя электроны, которые притягиваются к положительному электроду. В конце концов, возникает направленное движение электронов, что, собственно, и является электрическим током. Однако количество таким образом испускаемых электронов слишком мало, что дает слишком малый ток для какого-либо использования. С этой проблемой можно справиться добавлением еще одного электрода. Такой электрод отрицательного потенциала называется электродом косвенного накаливания. С его использованием количество движущихся электронов в разы увеличивается (рис. 6).

Электрический ток в вакууме

Рис. 6. Использование электрода косвенного накаливания

Стоит отметить, что проводимость тока в вакууме такая же, как и у металлов – электронная. Хотя механизм появления этих свободных электронов совсем иной.

Электронно-лучевая трубка

Как уже было сказано выше, на основе свойств распространения тока в вакууме было сконструировано такое важное устройство, как электронно-лучевая трубка. В основе своей работы она использует свойства электронных пучков. Рассмотрим строение этого прибора. Электронно-лучевая трубка состоит из вакуумной колбы, имеющей расширение, электронной пушки, двух катодов и двух взаимно перпендикулярных пар электродов (рис. 10).

Электрический ток в вакууме

Рис. 10. Строение электронно-лучевой трубки

Принцип работы следующий: вылетевшие вследствие термоэлектронной эмиссии из пушки электроны разгоняются благодаря положительному потенциалу на анодах. Затем, подавая желаемое напряжение на пары управляющих электродов, мы можем отклонять электронный пучок, как нам хочется, по горизонтали и по вертикали. После чего направленный пучок падает на люминофорный экран, что позволяет нам видеть на нем изображение траектории пучка.

Электронно-лучевая трубка используется в приборе под названием осциллограф (рис. 11), предназначенном для исследования электрических сигналов, и в кинескопических телевизорах за тем лишь исключением, что там электронные пучки управляются магнитными полями.

Электрический ток в вакууме

Рис. 11. Осциллограф

Выводы

Кратко о электрическом токе в вакууме мы узнали их этой статьи. Для существования его в вакууме в первую очередь необходимо наличие свободных заряженных частиц. Также рассмотрены виды вакуума и их характеристики. Необходимым для изучения является понятие термоэлектронной эмиссии. Информацию можно использовать для подготовки доклада и сообщения на уроке физики.

Вау!! 😲 Ты еще не читал? Это зря!

Исследование, описанное в статье про ток в вакууме , подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое ток в вакууме и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Постоянный электрический ток

Из статьи мы узнали кратко, но содержательно про ток в вакууме
создано: 2021-11-14
обновлено: 2021-11-14
16



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Базовая физика

Термины: Базовая физика