Лекция
Привет, Вы узнаете о том , что такое ток в вакууме , Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое ток в вакууме , настоятельно рекомендую прочитать все из категории Постоянный электрический ток.
Пустота – так переводится слово вакуум с латыни. Вакуумом принято называть пространство, в котором находится газ, давление которого в сотни, а может быть и в тысячи раз ниже атмосферного. На нашей планете вакуум создается искусственным путем, так как в естественных условиях такое состояние невозможно.
Как же ведет себя электрический ток в вакууме ? Как и любой ток, ток в вакууме появляется при наличии источника со свободными заряженными частицами.
Какими частицами создается электрический ток в вакууме? Чтобы создать вакуум в каком-либо закрытом сосуде, необходимо из него откачать газ. Делают это чаще всего с помощью вакуумного насоса. Это такое устройство, которое необходимо, чтобы откачать газ или пар до нужного для опыта давления.
Существует четыре вида вакуума: низкий вакуум, средний вакуум, высокий вакуум и сверхвысокий вакуум.
Рис. 1. Характеристики вакуума
Ток в вакууме не может существовать самостоятельно, так как вакуум является диэлектриком. В таком случае создать ток можно с помощью термоэлектронной эмиссии. Термоэлектронная эмиссия – явление, при котором электроны выходят из металлов при нагревании. Такие электроны называются термоэлектронами, а все тело – эмиттер.
На это явление впервые обратил внимание американский ученый Томас Эдисон в 1879 году.
Рис. 2. Термоэлектронная эмиссия
Эмиссия делится на:
Электроны смогут вылететь из металла, если будут обладать достаточной кинетической энергией. Она должна быть больше работы выхода электронов для данного металла. Об этом говорит сайт https://intellect.icu . Электроны, вылетающие из катода, образуют электронное облако. Половина из них возвращается в исходное положение. В равновесном состоянии число вылетевших электронов равно количеству вернувшихся. От температуры прямо пропорционально зависит плотность электронного облака (т.е. при повышении температуры, плотность облака становится больше).
При подключении электродов к источнику между ними возникает электрическое поле. Если положительный полюс источника тока соединить с анодом (холодным электродом), а отрицательный – с катодом (нагретым электродом), то напряженность электрического поля будет направлена к нагретому электроду.
Электрический ток в вакууме используется в различных электронных приборах. Одним из таких приборов является вакуумный диод
Рис. 3. Вакуумный диод
Состоит он из баллона, который включает 2 электрода – катод и анод.
В технике очень важное значение имеет использование так называемых электронных пучков.
Определение. Электронный пучок – поток электронов, длина которого много больше его ширины. Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка) (рис. 3).
Рис. 3. Электронная пушка
Электронные пучки обладают рядом ключевых свойств:
В результате наличия большой кинетической энергии они имеют тепловое воздействие на материал, в который врезаются. Данное свойство применяется в электронной сварке. Электронная сварка необходима в тех случаях, когда важно сохранение чистоты материалов, например, при сваривании полупроводников.
- При столкновении с металлами электронные пучки, замедляясь, излучают рентгеновское излучение, применяемое в медицине и технике (рис. 4).
Рис. 4. Снимок, сделанный при помощи рентгеновского излучения
- При попадании электронного пучка на некоторые вещества, называющиеся люминофорами, происходит свечение, что позволяет создавать экраны, помогающие следить за перемещением пучка, конечно же, невидимого невооруженным глазом.
- Возможность управлять движением пучков с помощью электрических и магнитных полей.
Следует отметить, что температура, при которой можно добиться термоэлектронной эмиссии, не может превышать той температуры, при которой идет разрушение структуры металла.
На первых порах Эдисон использовал следующую конструкцию для получения тока в вакууме. В вакуумную трубку с одной стороны помещался проводник, включенный в цепь, а с другой стороны – положительно заряженный электрод (см. рис. 5):
Рис. 5
В результате прохождения тока по проводнику он начинает нагреваться, эмиссируя электроны, которые притягиваются к положительному электроду. В конце концов, возникает направленное движение электронов, что, собственно, и является электрическим током. Однако количество таким образом испускаемых электронов слишком мало, что дает слишком малый ток для какого-либо использования. С этой проблемой можно справиться добавлением еще одного электрода. Такой электрод отрицательного потенциала называется электродом косвенного накаливания. С его использованием количество движущихся электронов в разы увеличивается (рис. 6).
Рис. 6. Использование электрода косвенного накаливания
Стоит отметить, что проводимость тока в вакууме такая же, как и у металлов – электронная. Хотя механизм появления этих свободных электронов совсем иной.
Как уже было сказано выше, на основе свойств распространения тока в вакууме было сконструировано такое важное устройство, как электронно-лучевая трубка. В основе своей работы она использует свойства электронных пучков. Рассмотрим строение этого прибора. Электронно-лучевая трубка состоит из вакуумной колбы, имеющей расширение, электронной пушки, двух катодов и двух взаимно перпендикулярных пар электродов (рис. 10).
Рис. 10. Строение электронно-лучевой трубки
Принцип работы следующий: вылетевшие вследствие термоэлектронной эмиссии из пушки электроны разгоняются благодаря положительному потенциалу на анодах. Затем, подавая желаемое напряжение на пары управляющих электродов, мы можем отклонять электронный пучок, как нам хочется, по горизонтали и по вертикали. После чего направленный пучок падает на люминофорный экран, что позволяет нам видеть на нем изображение траектории пучка.
Электронно-лучевая трубка используется в приборе под названием осциллограф (рис. 11), предназначенном для исследования электрических сигналов, и в кинескопических телевизорах за тем лишь исключением, что там электронные пучки управляются магнитными полями.
Рис. 11. Осциллограф
Кратко о электрическом токе в вакууме мы узнали их этой статьи. Для существования его в вакууме в первую очередь необходимо наличие свободных заряженных частиц. Также рассмотрены виды вакуума и их характеристики. Необходимым для изучения является понятие термоэлектронной эмиссии. Информацию можно использовать для подготовки доклада и сообщения на уроке физики.
Исследование, описанное в статье про ток в вакууме , подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое ток в вакууме и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Постоянный электрический ток
Из статьи мы узнали кратко, но содержательно про ток в вакууме
Комментарии
Оставить комментарий
Базовая физика
Термины: Базовая физика