Лекция
Привет, Вы узнаете о том , что такое ток в газах, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое ток в газах, ток в плазме, плазма , настоятельно рекомендую прочитать все из категории Постоянный электрический ток.
Электрическим током называют поток, который обусловлен упорядоченным движением электрически заряженных частиц. Движение зарядов принято за направление электрического тока. Электрический ток может быть кратковременным и долговременным.
При грозовом разряде может возникнуть электрический ток, который называют кратковременным. А для поддержания тока в течение длительного времени необходимо наличие электрического поля и свободных носителей электрического заряда.
Электрическое поле создают тела, заряженные разноименно. Силой тока называют отношение заряда, переносимое через поперечное сечение проводника за интервал времени, к этому интервалу времени. Измеряется она в Амперах.
Рис. 1. Формула силы тока
Молекулы газа в обычных условиях не проводят электрический ток. Они являются изоляторами (диэлектриками). Однако, если изменить условия окружающей среды, то газы могут стать проводниками электричества. В результате ионизации (при нагреве или под действием радиоактивного излучения) возникает электрический ток в газах, который часто заменяют термином «электрический разряд».
Разряды в газе могут быть самостоятельными и несамостоятельными. Ток начинает существовать, когда появляются свободные заряды. Несамостоятельные разряды существуют пока на него действует сила извне, то есть внешний ионизатор. То есть, если внешний ионизатор перестал действовать, то и ток прекращается.
Самостоятельный разряд электрического тока в газах существует даже после прекращения действия внешнего ионизатора. Самостоятельные разряды в физике подразделяются на тихий, тлеющий, дуговой, искровой, коронный.
Рис. 2. Тлеющий разряд
Рис. 3. Дуговой разряд
Сами по себе атомы и молекулы газа нейтральны. Они заряжаются при воздействии извне. Если говорить кратко об электрическом токе в газах, то он представляет собой направленное движение частиц (положительных ионов к катоду и отрицательных ионов к аноду). Также важным является, что при ионизации газа, его проводящие свойства улучшаются.
плазма . При достаточно высокой температуре любое вещество испаряется, превращаясь в газ. При дальнейшем увеличении температуры усиливается термическая ионизация. Нейтральные молекулы газа распадаются на составляющие их атомы, которые в дальнейшем превращаются в ионы. Кроме того, ионизация газа может быть обусловлена его взаимодействием с электромагнитным излучением (фотоионизация) или бомбардировкой газа заряженными частицами, например, ионизация электронным ударом.
Плазма — полностью или частично ионизованный газ, в котором концентрации положительных и отрицательных зарядов практически совпадают, т. е. средние плотности положительных ρ+ и отрицательных ρ– зарядов одинаковы по модулю: ρ+ = |ρ−|.
Рис. 214
В зависимости от степени ионизации различают частично ионизованную и полностью ионизованную плазму. В зависимости от скорости теплового движения заряженных частиц различают низкотемпературную (< 105 К) и высокотемпературную (> 106 К) плазму. Примером низкотемпературной плазмы является плазма, образующаяся при всех видах электрического разряда в газах. Звезды представляют собой гигантские сгустки высокотемпературной плазмы.
Плазма заполняет космическое пространство между звездами и галактиками и является самым распространенным состоянием вещества во Вселенной (рис. 214). Концентрация плазмы в межгалактическом пространстве очень мала, в среднем одна частица на кубический метр. Верхний слой атмосферы Земли также представляет собой слабо ионизованную плазму. Причиной ионизации являются ультрафиолетовое и рентгеновское излучение Солнца и других звезд, быстрые заряженные частицы и др.
Независимо от способа получения плазма в целом является электрически нейтральной. Проводимость плазмы растет с увеличением отношения числа ионизованных атомов (молекул) к их общему числу. Полностью ионизованная плазма по своей проводимости приближается к сверхпроводникам.
Плазма представляет собой ионизированный газ, который образуется из заряженных ионов и электронов и из нейтральных атомов.
Интересно знать! После того, как в газе не осталось нейтральных частиц, плазма становится полностью ионизированной.
Интересно знать! Нагревание – не единственный способ получить плазму. Также состояние плазмы у газов могут вызывать: космические лучи, ультрафиолетовое и радиоактивное излучение, проходящий пучок быстрых электронов и прочее.
Выходит, что плазма – это четвертое состояние вещества, больше всего походящее на газ, и ведущее себя точно также при многих условиях.
В плазменном телевизоре `пузырьки` газов неона и ксенона размещены в сотни и сотни тысяч маленьких ячеек, сжатых между двумя стеклянными панелями. Между панелями по обеим сторонам ячеек расположены также длинные электроды. `Адресные` электроды находятся за ячейками, вдоль задней стеклянной панели. Прозрачные электроды покрыты диэлектриком и защитной пленкой оксида магния (MgO). Они располагаются над ячейками, вдоль передней стеклянной панели.
Обе `сетки` электродов перекрывают весь дисплей. Электроды дисплея выстроены в горизонтальные ряды вдоль экрана, а адресные электроды расположены вертикальными колонками. Как видно на рисунке ниже, вертикальные и горизонтальные электроды формируют базовую сетку.
Для того, чтобы ионизировать газ в отдельной ячейке, компьютер плазменного дисплея заряжает те электроды, которые на ней пересекаются. Он делает это тысячи раз за малую долю секунды, заряжая каждую ячейку дисплея по очереди.
Когда пересекающиеся электроды заряжены, через ячейку проходит электрический разряд. Поток заряженных частиц заставляет атомы газа высвобождать фотоны света в ультрафиолетовом диапазоне.
Фотоны взаимодействуют с фосфорным покрытием внутренней стенки ячейки. Как известно, фосфор – материал, под действием света сам испускающий свет. Когда фотон света взаимодействует с атомом фосфора в ячейке, один из электронов атома переходит на более высокий энергетический уровень. После чего электрон смещается назад, при этом высвобождается фотон видимого света.
Пиксели в плазменной панели состоят из трех ячеек-субпикселей, каждая из которых имеет свое покрытие – из красного, зеленого или синего фосфора. В ходе работы панели эти цвета комбинируются компьютером, создаются новые цвета пикселя. Меняя ритм пульсации тока, проходящего через ячейки, контрольная система может увеличивать или уменьшать интенсивность свечения каждого субпикселя, создавая сотни и сотни различных комбинаций красного, зеленого и синего цветов.
Главное преимущество производства плазменных дисплеев – возможность создавать тонкие панели с широкими экранами. Поскольку свечение каждого пикселя определяется индивидуально, изображение выходит потрясающе ярким, причем при просмотре под любым углом. В норме насыщенность и контрастность изображения несколько уступает лучшим моделям ЭЛТ-телевизоров, но вполне оправдывает ожидания большинства покупателей. Главный недостаток плазменных панелей – их цена. Дешевле пары тысяч долларов новую плазменную панель купить невозможно, модели hi-end класса обойдутся в десятки тысяч долларов. Впрочем, с течением времени технология значительно усовершенствовалась, цены продолжают падать. Сейчас плазменные панели начинают уверенно теснить ЭЛТ-телевизоры. особенно это заметно в богатых, технологически развитых странах. В ближайшем будущем `плазма` придет в дома даже небогатых покупателей.
Плазменные панели немного похожи на ЭЛТ-телевизоры – покрытие дисплея использует способный светиться фосфоросодержащий состав. В то же время они, как и LCD, используют сетку электродов с защитным покрытием из оксида магния для передачи сигнала на каждый пиксель-ячейку. Ячейки заполнены интернтыми, т. н. `благородными` газами – смесью неона, ксенона, аргона.
Проходящий через газ электрический ток заставляет его светиться. По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму – т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц. Будучи электрически нейтральной, плазма содержит равное число электронов и ионов и является хорошим проводником тока. После разряда плазма испускает ультрафиолетовое излучение, заставляющий светиться фосфорное покрытие ячеек-пикселей. Красную, зеленую или синюю составляющую покрытия.
На самом деле каждый пиксель делится на три субпикселя, содержащих красный, зеленый либо синий фосфор. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` – при помощи 8-битной испульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.
Тот факт, что плазменные панели сами являются источником света, обеспечивает отличные углы обзора по вертикали и горизонтали и великолепную цветопередачу (в отличие от, например, LCD, экраны в которых обычно нуждаются в подсветке матрицы). Впрочем, обычные плазменные дисплеи в норме страдают от низкой контрастности. Это обусловлено необходимостью постоянно подавать низковольтный ток на все ячейки. Без этого пиксели будут `включаться` и `выключаться` как обычные флуоресцентные лампы, то есть очень долго, непозволительно увеличивая время отклика. Таким образом, пиксели должны оставаться выключенными, в то же время испуская свет низкой интенсивности, что, конечно, не может не сказаться на контрастности дисплея. В конце 90-х гг. прошлого века Fujitsu удалось несколько смягчить остроту проблемы, улучшив контрастность своих панелей с 70:1 до 400:1. К 2000 году некоторые производители заявляли в спецификациях панелей контрастность до 3000:1, сейчас – уже 10000:1+.
Процесс производства плазменных дисплеев несколько проще, чем процес производства LCD. В сравнении с выпуском TFT LCD-дисплеев, требующим использования фотолитографии и высокотемпературных технологий в стерильно чистых помещениях, `плазму` можно выпускать в цехах погрязнее, при невысоких температурах, с использованием прямой печати. Тем не менее, век плазменных панелей недолог – совсем недавно среднестатистический ресурс панели равнялся 25000 часов, сейчас он почти удвоился, но проблему это не снимает. В пересчете на часы работы плазменный дисплей обходится дороже LCD. Для большого презентационного экрана разница не очень существенная, однако, если оснастить плазменными мониторами многочисленные офисные компьютеры, выигрыш LCD становится очевидным для компании-покупателя.
Еще один важный недостаток `плазмы` – большой размер пикселей. Большинство производителей неспособны создавать ячейки менее 0,3 мм – это больше, чем зерно стандартного компьютерного монитора. Непохоже, чтобы в ближайшем будущем ситуация изменилась к лучшему.
Плазма бывает двух типов:
Для обоих видов характерны высокая электропроводность и сильное взаимодействие с окружающими электромагнитными и электрическими полями.
Интересно знать! Во вселенной 99% вещества – это и есть плазма.
Если в сосуд, заполненный плазмой, поместить два электрода, то в случае наличия между ними электрического поля, ток потечет через плазму – отрицательные ионы двигаются к положительно заряженному электроду, и наоборот. При этом процесс сопровождается различными оптическими и тепловыми явлениями. Данное явление называется газовым разрядом.
Низкотемпературная газоразрядная плазма, образующаяся при тлеющем, искровом и дуговом разрядах в газах, широко используется в различных источниках света, в газовых лазерах, для сварки, резки, плавки и других видов обработки металлов.
Основной практический интерес к физике плазмы связан с решением проблемы управляемого термоядерного синтеза – процесс слияния легких атомных ядер при высоких температурах в управляемых условиях. Энергетический выход реактора составляет 105 кВт/м3 в реакции
)
при плотности плазмы 105 см-3 и температуре 108 К.
Удерживать высокотемпературную плазму предлагается (1950 г. СССР, И. Е. Тамм, А. Д. Сахаров) сильным магнитным полем в тороидальной камере с магнитными катушками, сокращенно - токамак.
Внутренний вид токамака
На рисунке 8.11 изображена схема токамака: 1 – первичная обмотка трансформатора; 2 – катушки тороидального магнитного поля; 3 – лайнер, тонкостенная внутренняя камера для выравнивания тороидального электрического поля; 4 – катушки тороидального магнитного поля; 5 – вакуумная камера; 6 – железный сердечник (магнитопровод).
Рис. 8.11
В настоящее время, в рамках осуществления мировой термоядерной программы, интенсивно разрабатываются новейшие системы типа токамак. Например, в Санкт Петербурге создан первый Российский сферический токамак «Глобус-М». Планируется создание крупного токамака ТМ-15, для исследования управления конфигурацией плазмы. Начато сооружение Казахстанского токамака КТМ для отработки технологий термоядерной энергетики. На рисунке 8.12 приведена схема токамака КТМ в сечении и его вид с вакуумной камерой.
Рис. 8.12
Осуществление управляемой термоядерной реакцией в высокотемпературной плазме позволит человечеству в будущем получить практически неисчерпаемый источник энергии.
Низкотемпературная плазма (Т ~ 103 К) находит применение в газоразрядных источниках света, газовых лазерах, термоэлектронных преобразователях тепловой энергии в электрическую. Возможно создание плазменного двигателя, эффективного для маневрирования в космическом пространстве и длительных космических полетов.
Плазма служит в качестве рабочего тела в плазменных ракетных двигателях и МГД-генераторах.
Движение плазмы в магнитном поле используется в методе прямого преобразования внутренней энергии ионизованного газа в электрическую. Этот метод осуществлен в магнитогидродинамическом генераторе (МГД-генераторе), принципиальная схема которого показана на рисунке 8.13.
Рис. 8.13
Сильно нагретый ионизованный газ, образующийся в результате сгорания топлива и обогащения продуктов сгорания парами щелочных металлов, которые способствуют повышению степени ионизации газа, проходит через сопло и расширяется в нем. При этом часть внутренней энергии газа преобразуется в его кинетическую энергию. В поперечном магнитном поле (на рисунке 8.9 вектор магнитной индукции поля направлен за плоскость чертежа) положительные ионы отклоняются под действием сил Лоренца к верхнему электроду А, а свободные электроны – к нижнему электроду К. При замыкании электродов на внешнюю нагрузку в ней идет электрический ток, направленный от анода А, МГД-генератора, к его катоду К.
МГД-генератор Фарадея с линейным соплом и сегментированными электродами:
entry — входное отверстие для подвода рабочего тела (ионизированного газа);
acceleration nozzle — сопло для увеличения скорости рабочего тела;
solenoids — соленоиды для создания магнитного поля;
segmented electrodes — электроды, разделенные на сегменты для уменьшения эффекта Холла;
output — выходное отверстие для вывода рабочего тела;
красная линия — направление движения положительно заряженных частиц;
синяя линия — направление движения отрицательно заряженных частиц;
B — магнитная индукция;
I — электрический ток;
v — скорость рабочего тела
Теоретически, существуют пять направлений промышленного применения МГД-генераторов:
Исследование, описанное в статье про ток в газах, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое ток в газах, ток в плазме, плазма и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Постоянный электрический ток
Комментарии
Оставить комментарий
Базовая физика
Термины: Базовая физика