Лекция
Это окончание невероятной информации про распознавание лиц.
...
фотографий лица пользователей. Ведь онлайн-платежи представляют собой привлекательную мишень для кибер-преступников.
В конце 2015 года группа экспертов из Технического Университета Берлина продемонстрировала возможность извлечения PIN-кода любого смартфона при использовании сэлфи пользователя. Для этого они считывали данный код, который отображался в глазах пользователя, когда он вводил его на своем телефоне OPPO N1. Хакеру достаточно просто перехватить контроль над фронтальной камерой смартфона для выполнения этой элементарной атаки. Смог бы кибер-преступник перехватить контроль за устройством пользователя, сделать его сэлфи и после этого выполнить онлайн-платежи с помощью набранного пароля, который хакер увидел в глазах своей жертвы?
MasterCard настаивает на том, что ее механизмы обеспечения безопасности будут в состоянии обнаруживать подобное поведение. Например, пользователям необходимо будет мигать для приложения, чтобы продемонстрировать «живой» образ человека, а не его фотографию или предварительно снятое видео. Система сопоставляет изображение лица пользователя, конвертируя его в код и передавая его по безопасному протоколу через Интернет в MasterCard. Компания обещает, что эта информация будет безопасно храниться на ее серверах, при этом сама компания не сможет реконструировать лицо пользователя.
Летом 2016 года стало известно, что исследователи обошли систему биометрической аутентификации, используя фото из Facebook. Атака стала возможной благодаря потенциальным уязвимостям, присущим социальным ресурсам.
Команда исследователей из Университета штата Северная Каролина продемонстрировали метод обхода систем безопасности, построенных на технологии распознавания лиц, при помощи доступных фотографий пользователей соцсетей. Как поясняется в докладе специалистов, атака стала возможной благодаря потенциальным уязвимостям, присущим социальным ресурсам.
«Не удивительно, что личные фото, размещенные в социальных сетях, могут представлять угрозу конфиденциальности. Большинство крупных соцсетей рекомендуют пользователям установить настройки конфиденциальности при публикации фото на сайте, однако многие из этих снимков часто доступны широкой публике или могут быть просмотрены только друзьями. Кроме того, пользователи не могут самостоятельно контролировать доступность своих фото, размещенных другими подписчиками», - отмечают ученые.
В рамках эксперимента исследователи отобрали фотографии 20 добровольцев (пользователей Facebook, Google+, LinkedIn и других социальных ресурсов). Затем они использовали данные снимки для создания трехмерных моделей лиц, «оживили» их с помощью ряда анимационных эффектов, наложили на модель текстуру кожи и откорректировали взгляд (при необходимости). Получившиеся модели исследователи протестировали на пяти системах безопасности, четыре из них удалось обмануть в 55-85% случаев.
Мультимодальные биометрические системы, построенные на сочетании нескольких биометрических технологий, таких как распознавание отпечатков пальцев, черт лица, голоса и т.д., отличаются высокой эффективностью обнаружения несанкционированного доступа к устройствам банковского самообслуживания, базам данных системы здравоохранения, мобильным устройствам, а также большому количеству онлайновых и офлайновых приложений.
В связи с растущей потребностью в повышении уровня безопасности в Европе ожидается устойчивый рост использования систем биометрической идентификации по лицу. По состоянию на 2015 г., несмотря на тот факт, что Европа является вторым крупнейшим участником мирового рынка технологий биометрической идентификации по лицу, другие технологии, такие как распознавание отпечатков пальцев, рисунка вен на руке и радужной оболочки глаза, распространены шире. Внедрение систем facial recognition осуществлялось более низкими темпами, что было связано с кризисом в еврозоне. Но аналитики ожидают, что в течение следующих четырех лет совокупные темпы годового роста этого рынка превысят 21%.
Производители инвестируют значительные средства в научные исследования и разработку систем биометрической идентификации по лицу. Ожидается, что это значительно ускорит развитие таких систем за счет идентификации качественных параметров лица, в том числе шрамов, длины носа или выражения лица, и которые могут быть использованы для определения возраста или пола человека.
Технологии биометрической идентификации по лицу могут использоваться в сфере розничной торговли для идентификации клиентов и отслеживания их покупок, покупательских привычек, возраста, пола, криминальной и кредитной истории. Ожидается, что данные, полученные с помощью таких систем, будут использоваться ритейлерами в маркетинговых целях и для того, чтобы делать клиентам специальные предложения на основе информации об их предыдущих покупках.
2015 год: По данным СМИ[43], MasterCard анонсировал летом 2015 года запуск тестирования программы подтверждения онлайн-покупок будет происходить путем сканирования лица пользователя.
На завершающем этапе покупки интернет-покупателю необходимо будет сделать свое фото с помощью смартфона. MasterCard полагает, что это намного легче, чем запоминать пароли.
Как сообщает CNN Money, с помощью нового инновационного инструмента платежная система планирует сократить уровень мошенничества. "Думаю, новому поколению, которое живет снимками селфи, понравится. Они наверняка подхватят эту технологию", – сообщил Аджай Бхала (Ajay Bhalla), директор MasterCard по инновационным решениям в сфере безопасности.
MasterCard использует технологию безопасности онлайн-платежей SecureCode, которая предполагает введение пароля для подтверждения оплаты в интернете. По данным компании, эта технология использовалась в 3 млрд транзакций за прошлый год, она предотвращает случаи использование мошенниками карты в интернете. Однако пароли забываются, их могут украсть или перехватить. Именно поэтому многие финансовые компании начали внедрять биометрические технологии для удобства пользователей и повышения уровня безопасности.
Сначала проект охватит 500 пользователей, а в случае успешного тестирования – будет запущен для публичного использования.
2014 год: Создатели израильского стартапа IsItYou планируют использовать фронтальные камеры смартфонов в качестве способа подтверждения личности людей при совершении банковских транзакций. Согласно данным издания ВВС, израильтяне уверены, что в будущем селфи смогут заменить пароли, отпечатки пальцев и другие формы идентификации личности. В IsItYou реализовали новую технологию распознавания лиц, обладающей высокой степенью точности и защиты от мошенничества[44].
Основатель проекта Биньямин Леви (Benjamin Levy) рассказал, что благодаря высокому уровню защищенности IsItYou сможет распознать 99999 из 100 тысяч случаев обмана. Леви попытался убедить банки о необходимости внедрения его системы уже в следующем году. Она будет использоваться для проведения финансовых транзакций.
Google уже использует функцию распознавания лица в Android. Таким образом можно разблокировать устройство под управлением этой мобильной ОС. Тем не менее, разработчики неоднократно утверждали, что распознавание лица недостаточно защищено по сравнению с классическими способами. В связи с этим эксперты засомневались в утверждениях Биньямина Леви.
Мариос Саввидис (Marios Savvedes) из университета Карнеги-Меллон занимается исследованием функции распознавания лица. Он считает, что самостоятельно проведенное испытание на защищенность IsItYou не может быть надежным.
Такого же мнения придерживается мировой эксперт в области биометрии доктор Массимо Тистарелли (Massimo Tistarelli). Он сказал, что в Европе проводится полномасштабный научный проект Tabula Rasa, главная цель которого - разработка защиты от мошенничества для биометрических способов идентификации. По его словам, перед выходом на рынок следует провести ряд независимых исследований, подтверждающих эффективность продукта.
К сожалению, в одной статье не просто дать все знания про распознавание лиц. Но я - старался. Если ты проявишь интерес к раскрытию подробностей,я обязательно напишу продолжение! Надеюсь, что теперь ты понял что такое распознавание лиц и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Распознавание образов
Часть 1 Анализ существующих подходов к распознаванию лиц
Часть 2 6. Основные проблемы, связанные с разработкой систем распознавания лиц -
Часть 3 2018 - Анализ существующих подходов к распознаванию лиц
Часть 4 2017 - Анализ существующих подходов к распознаванию лиц
Часть 5 2015 - Анализ существующих подходов к распознаванию лиц
Комментарии
Оставить комментарий
Распознавание образов
Термины: Распознавание образов