Лекция
Привет, Вы узнаете о том , что такое метод дробящихся эталонов линейные решающие правила, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое метод дробящихся эталонов линейные решающие правила , настоятельно рекомендую прочитать все из категории Распознавание образов.
Метод дробящихся эталонов
|
||
Процесс обучения состоит в следующем. На первом этапе в обучающей выборке " охватывают " все объекты каждого класса гиперсферой возможно меньшего радиуса. Сделать это можно, например, так. Строится эталон каждого класса. Вычисляется расстояние от эталона до всех объектов данного класса, входящих в обучающую выборку. Выбирается максимальное из этих расстояний . Строится гиперсфера с центром в эталоне и радиусом =+. Она охватывает все объекты данного класса. Такая процедура проводится для всех классов (образов). На рис. 3 приведен пример двух образов в двухмерном признаковом пространстве. Рис. 3. Решающее правило типа “Метод дробящихся эталонов” Если гиперсферы различных образов пересекаются и в области перекрытия оказываются объекты более чем одного образа, то для них строятся гиперсферы второго уровня, затем третьего и т.д. до тех пор, пока области не окажутся непересекающимися, либо в области пересечения будут присутствовать объекты только одного образа. Распознавание осуществляется следующим образом. Определяется местонахождение объекта относительно гиперсфер первого уровня. При попадании объекта в гиперсферу, соответствующую одному и только одному образу, процедура распознавания прекращается. Если же объект оказался в области перекрытия гиперсфер, которая при обучении содержала объекты более чем одного образа, то переходим к гиперсферам второго уровня и проводим действия такие же, как для гиперсфер первого уровня. Этот процесс продолжается до тех пор, пока принадлежность неизвестного объекта тому или иному образу не определится однозначно. Правда, это событие может и не наступить. В частности, неизвестный объект может не попасть ни в одну из гиперсфер какого-либо уровня. В этих случаях "учитель" должен включить в решающие правила соответствующие действия. Например, система может либо отказаться от решения об однозначном отнесении объекта к какому-либо образу, либо использовать критерий минимума расстояния до эталонов данного или предшествующего уровня и т.п. Какой из этих приемов эффективнее, сказать трудно, т.к. метод дробящихся эталонов носит в основном эмпирический характер. |
||
Линейные решающие правила |
||
Само название говорит о том, что граница, разделяющая в признаковом пространстве области различных образов, описывается линейной функцией (рис. 4) =.
Рис. 4. Линейное решающее правило для распознавания Одна граница при этом разделяет области двух образов. Если >2, то требуется несколько линейных функций и граница является, вообще говоря, кусочно линейной. Для наглядности будем считать =2. Если на множестве объектов выполняется условие , если – реализация первого образа, если – реализация второго образа, то образы и называют линейно разделимыми. Существуют различные методы построения линейных решающих правил. Об этом говорит сайт https://intellect.icu . Рассмотрим один из них, реализованный в 50-х годах Розенблатом, в устройствах распознавания изображений, названных персептронами (рис. 5). Пусть
где – некоторый объект одного из образов, . Рис. 5. Упрощенная схема однослойного персептрона Выбор осуществляется пошаговым образом. Текущее значение заменяется новым после предъявления персептрону очередного объекта обучающей выборки. Эта корректировка производится по следующему правилу: 1. , если и или если и . 2. , если и , . 3. , если и . Это правило вполне логично. Если очередной объект системой классифицирован правильно, то нет оснований изменять . В случае (2) следует изменить так, чтобы увеличить . Предложенное правило удовлетворяет этому требованию. Действительно, . Соответственно в случае (3) . Важное значение имеет выбор . Можно, в частности, выбрать . При этом показано, что если обучающие выборки двух образов линейно разделимы, то описанная пошаговая процедура сходится, то есть будут найдены значения , при которых , если , , если . Если же выборки линейно неразделимы (рис. 6), то сходимость отсутствует и оценку , минимизирующую число неправильных распознаваний, находят методом стохастической аппроксимации. |
Представленные результаты и исследования подтверждают, что применение искусственного интеллекта в области метод дробящихся эталонов линейные решающие правила имеет потенциал для революции в различных связанных с данной темой сферах. Надеюсь, что теперь ты понял что такое метод дробящихся эталонов линейные решающие правила и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Распознавание образов
Из статьи мы узнали кратко, но содержательно про метод дробящихся эталонов линейные решающие правила
Комментарии
Оставить комментарий
Распознавание образов
Термины: Распознавание образов