Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Промышленная робототехника, история , классификация, принцип работы, структура, применение

Лекция



Сразу хочу сказать, что здесь никакой воды про промышленная робототехника, и только нужная информация. Для того чтобы лучше понимать что такое промышленная робототехника, промышленный робот , настоятельно рекомендую прочитать все из категории Робототехника.

промышленный робот — предназначенный для выполнения двигательных и управляющих функций в производственном процессе манипуляционный робот, т. е. автоматическое устройство, состоящее из манипулятора и перепрограммируемого устройства управления, которое формирует управляющие воздействия, задающие требуемые движения исполнительных органов манипулятора. Применяется для перемещения предметов производства и выполнения различных технологических операций .

В литературе на русском языке получило распространение следующее определение промышленного робота, взятое из : это — «автоматическая машина, стационарная или передвижная, состоящая из исполнительного устройства в виде манипулятора, имеющего несколько степеней подвижности, и перепрограммируемого устройства программного управления для выполнения в производственном процессе двигательных и управляющих функций». В промышленности, впрочем, наряду с манипуляционными роботами, получившими наибольшее распространение, используют также мобильные (локомоционные), информационные, информационно-управляющие, комплексные и другие виды промышленных роботов .

Промышленные роботы обычно являются одним из компонентов автоматизированных производственных систем, применяемых в гибком автоматизированном производстве (РТК, РТЯ, РТУ, РТЛ, РТС, ГПЛ и т. п.), которые при неизменном уровне качества позволяют увеличить производительность труда в целом.

Экономически выгодно использование промышленных роботов совместно с другими средствами автоматизации производства (автоматические линии, участки и комплексы).

Робот (Р) — автоматическая машина, включающая перепрограммируемое устройство управления и другие технические средства, обеспечивающие выполнение тех или иных действий (в зависимости от назначения Р), свойственных человеку в процессе его трудовой деятельности. Наиболее совершенный Р представляет собой машину, способную самостоятельно и комплексно решать задачи самоуправления, адаптации с окружающей средой и выполнения трудовых действий. Общим признаком роботов является возможность быстрой переналадки для автоматического выполнения различных действий, предусмотренных программой.

Введение

промышленная робототехника является одним из новых направлений автоматизации производственных процессов, начало развития, которого в нашей стране относится к последнему десятилетию. Комплексный подход к решению технико-экономических и социальных задач, связанных с внедрением их промышленных роботов (ПР), позволил высвободить около 2000 рабочих. В процессе создания, производства и внедрения промышленного робота приходилось сталкиваться •с решением ряда сложных научно-технических проблем. Получен большой, опыт по разработке робототехнических комплексов (РТК) и организации автоматизированного производства на базе ПР. Все эти вопросы, получившие отражение в предлагаемой книге, представляют, по нашему мнению, значительный интерес как для широкого круга специалистов, конструкторов и производственников различных отраслей, которые заняты в настоящее время работой по увеличению производства и широкому применению промышленного робота во всех отраслях народного хозяйства, так и для всех специалистов, работающих в области автомати- зации производственных процессов.

Современный этап научно-технической революции характеризуется комплексной автоматизацией производства на базе систем машин—автоматов. До недавних пор в основном применяли специализированные автоматы и автоматические линии, незаменимые в массовом производстве, но нерентабельные в условиях серийного и мелкосерийного производства из-за высокой стоимости, а также длительности разработки, внедрения и перена-ладки их на новую продукцию. Традиционное управляемое вручную оборудование обеспечивает достаточную гибкость производства, но требует примене-ния квалифицированного труда рабочих и имеет низкую производительность.

За последние десятилетия автоматизация основных технологических операций (формообразование и изменение физических свойств деталей) достигла такого уровня, что вспомогательные операции, связанные с транспортировкой и складированием деталей, разгрузкой и загрузкой технологического оборудования, выполняемых вручную либо с помощью существующих средств механизации и автоматизации, являются тормозом как в повышении производительности труда, так и в дальнейшем совер-шенствовании технологии. Обычными методами с помощью существующих технических средств невозможно автоматизировать сборочные, сварочные, окрасочные и многие другие операции. Все это привело к острым противо-речиям между совершенством промышленной техники и характером труда при ее использовании, потребностью в трудовых ресурсах и их фактическим наличием, требованиями интенсификации производственных процессов и ограниченными психофизиологическими возможностями человека. Эти причины социального, экономического и технического характера, ставшие основными сдерживающими факторами в развитии производства и даль-нейшем повышении производительности труда, а также современные достижения в создании орудий производства, вычислительной техники и электроники привели к бурному развитию робототехники — отрасли, создавшей и производящей новую разновидность автоматических машин — промышленные роботы. По замыслу разработчиков эти машины предназ-начены для замены человека на опасных для здоровья, физически тяжелых и утомительно однообразных ручных работах. Свое название они получили благодаря реализованной в них идеи моделирования двигательных, управ-ляющих и, в некоторой степени, приспособительных функций рабочих, занятых на повторяющихся трудовых операциях по разгрузке-загрузке технологического оборудования, управлению работой этого оборудования, межоперационному перемещению и складированию деталей, а также на различных сборочных, сварочных, окрасочных и других операциях, выполняемых с применением переносных орудий труда.

Промышленные роботы (ПР) оказались тем недостающим звеном, появление которого позволило решать задачи комплексной автоматизации на более высоком уровне, объединяя средства производства предприятия в единый автоматизированный комплекс.

Начало разработки промышленных роботов

Толчком к появлению манипуляторов промышленного применения стало начало ядерной эпохи. В 1947 году в США группой сотрудников Аргоннской национальной лаборатории во главе с Р. Герцем[en] был разработан первый автоматический электромеханический манипулятор с копирующим управлением, повторяющий движения человека-оператора и предназначенный для перемещения радиоактивных материалов. Выполнять при помощи данного манипулятора такие операции, как вращение гаечного ключа или позиционирование предметов на поверхности, было сложно, поскольку никакой обратной связи по силе он не обеспечивал; однако уже в 1948 году компания «General Electric» разработала копирующий манипулятор «Хэнди Мэн» (англ. Handy Man), в котором такая обратная связь имелась, и оператор мог воспринимать силы, воздействующие на схват манипулятора .

Промышленная робототехника, история , классификация, принцип работы, структура, применение

Джордж Девол[en]

Первые промышленные роботы в собственном смысле этих слов начали создавать в середине 1950-х годов в США. В 1954 году американский инженер Дж. Девол[en] разработал способ управления погрузочно-разгрузочным манипулятором с помощью сменных перфокарт и подал патентную заявку на сконструированное им «программируемое устройство для переноски предметов», то есть на робот промышленного назначения (патент Деволу был выдан в 1961 году ). Вместе с Дж. Энгельбергом в 1956 году он организовал первую в мире компанию по выпуску промышленных роботов. Ее название «Юнимейшн»[de] (англ. Unimation) является сокращением термина «Universal Automation» ‘универсальная автоматика’ [10].

В 1959 году фирма «Консолидейтед Корпорейшн» (США) опубликовала описание манипулятора с числовым программным управлением (ЧПУ), а в 1960—1961 годов в американской печати появились первые сообщения о манипуляторах «Transferrobot» и «Eleximan» с программным управлением для автоматизации сборочных и других работ.

Появление роботизированного производства

В начале 1960-х годов в США были созданы первые в мире промышленные роботы «Юнимейт»[en] (фирма «Юнимейшн», 1961 г.) и «Версатран» (фирма «Америкэн Мэшин энд Фаундри»[en], 1962 г.). Их сходство с человеком ограничивалось наличием манипулятора, отдаленно напоминающего человеческую руку. Некоторые из них работают до сих пор, превысив 100 тысяч часов рабочего ресурса[11][12].

Экспериментальный прототип робота «Юнимейт» был создан уже в 1959 году, а весной 1961 года этот промышленный робот (ныне выставленный в Смитсоновском институте) был введен в эксплуатацию на литейном участке одного из заводов автомобильной корпорации «General Motors», находившегося в городке Юинг[en] — пригороде Трентона. Робот захватывал раскаленные отливки дверных ручек и других деталей автомобиля, опускал их в бассейн с охлаждающей жидкостью и устанавливал на конвейер, после чего они поступали к рабочим для обрезки и полировки[13][14]. Работая 24 часа в сутки, робот заменил три смены рабочих на тяжелой, грязной и опасной работе[15]. Данный робот имел 5 степеней подвижности с гидроприводом и двухпальцевое захватное устройство с пневмоприводом. Перемещение объектов массой до 12 кг осуществлялось с точностью 1,25 мм. В качестве системы управления использовался программоноситель в виде кулачкового барабана[de] с шаговым двигателем, рассчитанный на 200 команд управления, и кодовые датчики положения. В режиме обучения оператор задавал последовательность точек, через которые должны пройти звенья манипулятора в течение рабочего цикла. Робот запоминал координаты точек и мог автоматически перемещаться от одной точки к другой в заданной последовательности, многократно повторяя рабочий цикл. На операции разгрузки машины для литья под давлением «Юнимейт» работал с производительностью 135 деталей в час при браке 2 %, тогда как производительность ручной разгрузки составляла 108 деталей в час при браке до 20 %.

Промышленный робот «Версатран», имевший три степени подвижности и управление от магнитной ленты, мог у обжиговой печи загружать и разгружать до 1200 раскаленных кирпичей в час. В то время соотношение затрат на электронику и механику в стоимости робота составляло 75 % и 25 %, поэтому многие задачи управления решались за счет механики; сейчас же это соотношение изменилось на противоположное, причем стоимость электроники продолжает снижаться.

Дальнейшее развитие промышленных роботов

В 1967 году началось использование промышленных роботов на предприятиях Европы: первый промышленный робот (тот же «Юнимейт») был установлен на металлургическом заводе в городе Уппландс-Весбю[en], Швеция[12]. В том же году в эру роботизации вступила и Япония, которая приобрела робот «Версатран». Вскоре в Японии и Швеции, а также в Великобритании, ФРГ, Италии и Норвегии начался выпуск промышленных роботов собственного производства (в Японии первой к выпуску роботов приступила компания «Кавасаки Хэви Индастриз», которая в 1968 году приобрела у фирмы «Юнимейшн» лицензию на выпуск промышленных роботов[16]). Уже к концу 1970-х годов Япония вышла на первое место в мире как по годовому выпуску роботов, так и по числу промышленных роботов, установленных на предприятиях страны[17].

В СССР первые промышленные роботы появились в 1971 году; они были созданы под руководством профессора П. Н. Белянина (робот УМ-1) и лауреата Государственной премии СССР Б. Н. Сурнина (робот «Универсал-50»). В 1972—1975 годах был создан (усилиями различных научно-производственных организаций) уже целый спектр советских промышленных роботов (в том числе роботы серии «Универсал», ПР-5, «Бриг-10», ИЭС-690, МП-9С, ТУР-10 и другие)[18][19].

С 1960 года в США разрабатывались роботы с системами управления, основанные на принципе обратной связи. Первоначально задающие устройства в этих системах формировались на коммутаторной плате; в 1974 году фирма «Цинциннати Милакрон»[en] впервые применила в системе управления роботом компьютер, создав промышленный робот T3 (англ. The Tomorrow Tool ‘инструмент будущего’) [20].

Предлагаются необычные кинематические схемы манипуляторов. Быстро развиваются технологические роботы, выполняющие такие операции, как высокоскоростные резание, окраска, сварка. Появление в 1970-х годах микропроцессорных систем управления и замена специализированных устройств управления на программируемые контроллеры позволили снизить стоимость роботов в три раза, сделав рентабельным их массовое внедрение в промышленности. Этому способствовали объективные предпосылки развития промышленного производства.

1. Основные сведения о робототехнике

Ближайшими по назначению прототипами для промышленного робота послужили автоопе-раторы и механические руки, уже давно применяющиеся в промышленности, но не удовлетворяющие производственников по причинам их узкой специализации, плохой переналаживаемости, небольшого числа выполняемых функций и ограниченной (массовым и крупносерийным производством) области применения. Недостатки, присущие этим прототипам, в конструкциях промышленного робота были в значительной степени устранены посредством увеличения их манипуляционных возможностей, снабжения собственной системой привода и системой программного управления. Благодаря этому созданные устройства приобрели качественно новые свойства: автономность в смысле невстроенности в технологическое оборудование и способность работать автоматически по заданной программе; универсальность, т. е. способность перемещать в пространстве объекты различного типа по сложным пространственным траекториям, сопрягаемость с достаточно большим количеством типов технологического оборудования и хорошую переналаживаемость на различные сменяющиеся виды работ.

В настоящее время под роботом понимают автоматический манипуля-тор с программным управлением. В зависимости от участия человека в про-цессах управления роботами их подразделяют на биотехнические и авто-номные, или автоматические.

К биотехническим роботам относятся дистанционно управляемые копирующие роботы; экзоскелетоны; роботы, управляемые человеком с пульта управления; полуавтоматические роботы.

Дистанционно управляемые копирующие роботы снабжены задающим органом (например, манипулятором, полностью идентичным исполнитель-ному), средствами передачи сигналов прямой и обратной связи и средствами отображения информации для человека-оператора о среде, в которой функ-ционирует робот.

Экзоскелетоны выполняются в виде антропоморфных конструкций, обычно «надеваемых» на руки, ноги или корпус человека. Они служат для воспроизведения движений человека с некоторыми необходимыми усилиями и имеют иногда несколько десятков степеней подвижности.

Роботы, управляемые человеком с пульта управления, снабжаются системой рукояток, клавиш или кнопок, связанных с исполнительными механизмами каналов управления по различным обобщенным координатам. На пульте управления устанавливают средства отображения информации о среде функционирования робота, поступающей к человеку по радиоканалу связи.

Полуавтоматический робот характерен сочетанием ручного и автомати-ческого управления. Он снабжен супервизорным управлением для вмешательства человека в процесс автономного функционирования робота путем сообщения ему дополнительной информации с помощью указания цели, последовательности действий и т. п.

Роботы с автономным или автоматическим управлением обычно подразделяют на производственные и научно-исследовательские роботы, которые после создания и наладки в принципе могут функционировать без участия человека.

По областям применения производственные роботы подразделяют на промышленные, сельскохозяйственные, транспортные, строительные, бытовые и т. п.

За короткий период развития роботов произошли большие изменения в элементной базе, структуре, функциях и характере их использования. Это привело к делению роботов на поколения.

Роботы первого поколения (программные роботы) имеют жесткую программу действий и характеризуются наличием элементарной обратной связи с окружающей средой, что вызывает определенные ограничения в их применении.

Роботы второго поколения (очувствленные роботы) обладают коор-динацией движений с восприятием. Они пригодны для малоквалифици-рованного труда при изготовлении изделий. Программа движений робота требует для своей реализации управляющей ЭВМ.

Неотъемлемая часть роботов второго поколения — алгоритмическое и программное обеспечение, предназначенное для обработки сенсорной информации и выработки управляющих воздействий.

Роботы третьего поколения относятся к роботам с искусственным интеллектом. Они создают условия для полной замены человека в области квалифицированного труда, обладают способностью к обучению и адаптации в процессе решения производственных задач. Эти роботы способны понимать язык и вести диалог с человеком, формировать в себе модель внешней среды с той или иной степенью детализации, распознавать и анализировать сложные ситуации, формировать понятия, планировать поведение, строить програм-мные движения исполнительной системы и осуществлять их надежную отработку.

Появление роботов различных поколений не означает, что они последовательно приходят на смену друг другу. В процессе развития совершенствуются функциональные возможности и технические характеристики роботов различных поколений.

К роботам первого поколения относят обычно промышленные роботы. По количеству внедренных промышленного робота наша страна занимает одно из ведущих мест в мире.

Структура типового промышленного робота

В общем виде промышленные роботы представляют собой сложную автоматическую систему, предназначенную для автоматизации трудовой деятельности человека и состоящую из следующих основных компонентов:

  • • двигательная система (ДС);
  • • информационная (или сенсорная) система (ИС);
  • • управляющая система (УС);
  • • коммуникационная система (КС).

Двигательная система (ДС) включает в себя исполнительные механизмы (манипуляторы, педипуляторы, колесные или гусеничные шасси и т.п.), рабочие органы (захватные устройства, инструменты и т.п.), двигатели (электрические, гидравлические и т.п.), механизмы передачи движения источники и преобразователи энергии.

Информационная система (ИС) состоит из датчиков (сенсорных элементов) внутренней информации, конструктивно встроенных в ДС, и внешней информации, сигнализирующей о состоянии окружающей среды.

Управляющая система (УС) включает в себя электронные преобразователи цифровой и аналоговой информации, микропроцессоры или компьютеры для обработки сенсорной информации от И С и управления ДС вместе со встроенным программным обеспечением реального времени.

Коммуникационная система (КС) состоит из каналов прямой и обратной связи внутри робота и внешнего интерфейса для связи робота с человеком и другими роботами или периферийным оборудованием (станки, измерительные машины и т.п.).

Описанные разнородные системы конструктивно и функционально совмещены и являются обязательными компонентами каждого робота .

Блок-схема промышленного робота представляет собой сложную конструкцию (рис.1), включающую ряд систем: механическую, приводов управления, связи с оператором, информационную, а также операционное устройство.

Промышленная робототехника, история , классификация, принцип работы, структура, применение

Промышленная робототехника, история , классификация, принцип работы, структура, применение

Рисунок 1- Блок-схема промышленного робота.

Механическую систему выполняют, как правило, в виде манипулятора, имеющего несколько степеней подвижности, укрепленного на неподвижном или подвижном

основании; она обеспечивает перемещение рабочего органа с определенным грузом. Об этом говорит сайт https://intellect.icu . Форма и габаритные размеры манипулятора определяются видом и особенностями технологического процесса, для которого он предназначен. Созданные модели промышленного робота представляют собой по существу многокоординатные манипуляторы с программным управлением, программируемые по первому циклу. Их системы управления помимо основных функций по управлению движением рабочих органов манипулятора обеспечивают выдачу сигналов на обслуживаемое оборудование, прием сигналов от простейших датчиков внешней информации, работающих по принципу Да—Нет, и использование этих сигналов в целях выбора той или иной подпрограммы работы из числа заданных оператором. Наличие внешнего контура управления существенно расширило области применения созданных ПР, так как позволило использовать их по отношению к автоматизированному процессу не только в качестве универсальных манипулирующих, но также и в качестве управляющих устройств. Наличие датчиков и соответствующих электронных схем внешней информации придало этим промышленного робота принципиально новую способность адаптации к изменяющимся условиям работы.

Привод для каждой из координат промышленного робота обеспечивает силовое воздействие на соответствующий механизм, осуществляющий задаваемое перемещение. Приводом служит автоматическая система, входным сигналом которой является детерминированное воздействие управляющей системы, а выходным сигналом — механическое перемещение.

Разработка типажа ПР, имеющего существенное значение для организации их производства, проведения научно-исследовательских и опытно-конструкторских работ еще не закончена. В настоящее время наиболее разработан типаж промышленного робота первого поколения. Так, например, в станкостроительной и инструментальной промышленности по структуре типаж этих промышленного робота подразделяют на следующие группы и подгруппы: универсальные ПР, обслуживающие различное технологическое оборудование и выполняющие различные основные технологические операции; целевые промышленного робота подъемно-транспортной группы (многоцелевые), обслуживающие различное технологическое оборудование, выполняющие транс-портно-складские и специальные работы; целевые промышленного робота производственной группы (многоцелевые) для выполнения различных технологических операций сварки, очистки и подготовки деталей, окраски и нанесения покрытий, разборки, контроля, измерения, отбраковки, разметки и сборки.

Функциональная схема промышленного робота

Принцип работы промышленно горобота Промышленный робот состоит из подвижной платформы, вычислительной машины и оснащен приспособлениями для

сбора информации. Работа данного комплекса начинается с запуска управляющего устройства. После этого вычислительная машина (контроллер) обрабатывает и подает сигнал на вход двигателя, что приводит в действие робота, который с помощью устройств сбора информации выполняет необходимые действия. Наиболее наглядно эта система продемонстрирова на нарисунке 1, который содержит функциональную схему робота-манипулятора. На рисунке продемонстрировано, какс и стема управления, в соответствии с заданной программой, формирует и выдает на исполнительные устройстваприводов (двигатели) управляющие воздействия ui. Принеобходимости о накорректирует эти воздействия п осигналам Dxi, которыепоступаютвнеесдатчиковобратнойсвязи

. Промышленная робототехника, история , классификация, принцип работы, структура, применение

Рисунок - 1. Функциональная схема промышленного робота

В составе промышленного робота есть механическая часть (включающая один или несколько манипуляторов) и система управления этой механической частью. Кроме этого, робот может иметь средства очувствления (образующие в совокупности информационно-сенсорную систему), сигналы от которых поступают к системе управления[21].

Манипулятор

Манипулятор — это управляемый механизм (или машина), который предназначен для выполнения двигательных функций, аналогичных функциям руки человека при перемещении объектов в пространстве, и оснащен рабочим органом . В некоторых случаях в состав промышленного робота могут входить два (или большее число) манипуляторов[23].

Исполнительный механизм

Исполнительный механизм манипулятора, как правило, представляет собой открытую кинематическую цепь, звенья которой последовательно соединены между собой сочленениями различного типа; в подавляющем большинстве случаев, однако, встречаются кинематические пары V-го класса (обладающие одной степенью подвижности), а среди последних — поступательные и вращательные сочленения .

Сочетание и взаимное расположение звеньев и сочленений определяет число степеней подвижности, а также область действия манипуляционной системы робота. Обычно предполагают, что первые три сочленения в исполнительном механизме манипулятора реализуют транспортные (или переносные) степени подвижности (обеспечивая вывод рабочего органа в заданное место), а остальные реализуют ориентирующие степени подвижности (отвечая за нужную ориентацию рабочего органа) . В зависимости от вида первых трех сочленений большинство роботов относят к одной из четырех категорий :

  • роботы, работающие в декартовой системе координат — роботы, у которых все три начальных сочленения являются поступательными (например, робот RS-1 компании IBM);
  • роботы, работающие в цилиндрической системе координат — роботы, у которых среди начальных сочленений два поступательных и одно вращательное (например, робот Versatran 600 фирмы Prab);
  • роботы, работающие в сферической системе координат — роботы, у которых среди начальных сочленений одно поступательное и два вращательных (например, робот Unimate 2000B фирмы «Юнимейшн»);
  • роботы, работающие в угловой, или вращательной, системе координат — роботы, у которых все три начальных сочленения являются вращательными (например, роботы PUMA фирмы «Юнимейшн» или T3 фирмы «Цинциннати Милакрон»).

Для некоторых манипуляторов подразделение степеней подвижности на переносные и ориентирующие не принято. Примером могут служить манипуляторы с кинематической избыточностью (т. е. с числом степеней подвижности, бо́льшим шести); здесь управление перемещением рабочего органа и управление его ориентацией не «развязаны» по отдельным группам сочленений[26].

В некоторых случаях манипулятор промышленного робота устанавливают на подвижное основание, что означает наделение его дополнительными степенями подвижности. Так, манипулятор устанавливают на рельсы или же на подвижную каретку, передвигающуюся по напольной колее или вдоль подвесных направляющих[29].

Существуют промышленные роботы и с замкнутыми кинематическими цепями. Примером могут служить параллельные роботы[en] — манипуляционные роботы, в которых рабочий орган соединен с основанием по крайней мере двумя независимыми кинематическими цепями. К данному классу манипуляционных роботов относятся, в частности, платформа Гью — Стюарта и дельта-роботы[30][31].

Рабочий орган

На конце манипулятора (на его «запястье») располагается рабочий орган[en] — устройство, предназначенное для выполнения специального задания. В качестве рабочего органа может выступать захватное устройство или технологический инструмент[32].

Наиболее универсальной разновидностью захватного устройства является схват — устройство, в котором захватывание и удержание объекта производятся посредством относительного перемещения частей данного устройства[33]. Как правило, схват по своей конструкции напоминает кисть человеческой руки: захват объекта осуществляется с помощью механических «пальцев». Для захвата плоских предметов используются захватные устройства с пневматической присоской. Применяют также крюки (для поднятия деталей с конвейеров), черпаки или совки (для жидких, сыпучих или гранулированных веществ). Для захвата же множества однотипных деталей применяют специализированные конструкции (например, магнитные захватные устройства)[32].

По способу удержания объекта захватные устройства подразделяют на[34]:

  • схватывающие (механические схваты и устройства с эластичными рабочими камерами, в которые нагнетают жидкость или сжатый воздух);
  • поддерживающие (в них объект не зажимают, а применяют для его удержания нижнюю поверхность, выступающие части объекта или имеющиеся в нем отверстия);
  • удерживающие (в них на объект оказывают силовое воздействие за счет различных физических эффектов: вакуумные, магнитные и электростатические захваты, адгезия и т. п.).

Число применений промышленных роботов, в которых схват используется для удержания рабочего инструмента, относительно невелико. В большинстве случаев инструмент, нужный для выполнения технологической операции, крепится непосредственно к запястью робота, становясь его рабочим органом. Это может быть пульверизатор для окраски распылением, сварочные клещи для точечной сварки, сварочная головка для дуговой сварки, дисковый нож, дрель, фреза, отвертка, гайковерт и т. д.[32][35]

Приводы робота

Для приведения звеньев манипулятора и устройства схвата в движение используют электрические, гидравлические или пневматические приводы[36]. Гидравлические приводы предпочтительны в случаях, когда надо обеспечить значительную величину развиваемых усилий или высокое быстродействие; обычно такими приводами снабжаются крупные роботы большой грузоподъемности. Электрические приводы не обладают столь же большой силой или быстродействием, но позволяют добиться лучших точностных характеристик. Наконец, пневматические приводы обычно применяют для небольших по размерам роботов, выполняющих простые и быстрые циклические операции[37].

По имеющимся оценкам, примерно в 50 % современных промышленных роботах используется электрический привод, в 30 % — гидравлический и в 20 % — пневматический ].

Система управления

В развитии систем управления промышленных роботов можно проследить два направления. Одно из них берет свое начало от систем программного управления станками и вылилось в создание автоматически управляемых промышленных манипуляторов. Второе привело к появлению полуавтоматических биотехнических и интерактивных систем, в которых в управлении действиями промышленного робота участвует человек-оператор .

Большинство современных роботов функционирует на основе принципов обратной связи, подчиненного управления и иерархичности системы управления роботом[42][43].

Иерархическое построение системы управления роботом предполагает деление системы управления на горизонтальные слои (уровни): на верхнем уровне осуществляется управление общим поведением робота, на уровне планирования движений производится расчет необходимой траектории движения рабочего органа, на уровне координации приводов организуется согласованная работа приводов, обеспечивающая требуемое перемещение рабочего органа и, наконец, на уровне привода непосредственно осуществляется управление двигателем, отвечающим за конкретную степень подвижности манипулятора[42][43].

Первые роботы с программным управлением обычно программировали вручную. Позднее появились специальные языки программирования роботов (например, язык VAL для робота PUMA фирмы «Юнимейшн» или язык MCL, разработанный фирмой «МакДоннелл Дуглас» на основе языка программирования APT[en])[44]. В настоящее время для программирования таких роботов могут применяться среды программирования типа VxWorks/Eclipse или языки программирования например Forth, Оберон, Компонентный Паскаль, Си. В качестве аппаратного обеспечения обычно используются промышленные компьютеры в мобильном исполнении PC/104, реже MicroPC. Управление может происходить с помощью ПК или программируемого логического контроллера.

Подчиненное управление

Подчиненное управление служит для построения системы управления приводом. Если необходимо построить систему управления приводом по положению (например, по углу поворота звена манипулятора), то система управления замыкается обратной связью по положению, а внутри системы управления по положению функционирует система управления по скорости со своей обратной связью по скорости, внутри которой существует контур управления по току — также со своей обратной связью.

Современный робот оснащен не только обратными связями по положению, скорости и ускорениям звеньев. При захвате деталей робот должен знать, удачно ли он захватил деталь. Если деталь хрупкая или ее поверхность имеет высокую степень чистоты, строятся сложные системы с обратной связью по усилию, позволяющие роботу схватывать деталь, не повреждая ее поверхность и не разрушая ее.

Управление роботом осуществляется, как правило, системой управления промышленным предприятием (ERP-системой), согласующей действия робота с готовностью заготовок и станков с числовым программным управлением к выполнению технологических операций.

  • Промышленная робототехника, история , классификация, принцип работы, структура, применение

    Рядом стоящие шкафы современных систем управления двух промышленных роботов FANUC R-2000iB

  • Промышленная робототехника, история , классификация, принцип работы, структура, применение

    Внутри стойки управления: общий вид

  • Промышленная робототехника, история , классификация, принцип работы, структура, применение

    Внутри стойки управления: ЧПУ (в корзине из пластика желтого цвета)

  • Промышленная робототехника, история , классификация, принцип работы, структура, применение

    Система управления KUKA KRC4

Информационно-сенсорная система

К середине 1990-х годов относится появление на рынке адаптивных промышленных роботов, оснащенных сенсорными устройствами. Современные информационно-сенсорные системы, используемые в робототехнике, представляют собой совокупности функционально объединенных измерительных и вычислительных средств, задачей которых служит получение информации от различных датчиков и ее обработка для последующего использования системой управления[45].

Датчики, используемые в современных робототехнических системах, разнообразны и могут быть подразделены на следующие основные группы[46][47][48]:

  • внутренние, или кинестетические датчики, дающие информацию о значениях координат и усилий в сочленениях манипулятора;
    • датчики линейных и угловых перемещений (потенциометры, сельсины, индуктосины[pl], фотоэлектрические преобразователи и др.);
    • датчики линейных и угловых скоростей (тахогенераторы, струйные и фотоэлектрические датчики, импульсные генераторы и др.);
    • измерители сил и моментов в сочленениях (тензодатчики, пьезоэлектрические датчики и др.);
  • внешние датчики, обеспечивающие получение информации о внешней среде:
    • тактильные датчики, позволяющие определить характер контакта с объектами внешней среды;
    • акустические датчики, способные воспринимать звуковые сигналы извне или определять наличие изъянов и трещин в материалах;
    • визуальные датчики, обеспечивающие получение информации о геометрических и физических характеристиках объектов внешней среды (как правило, базируются на цифровых телевизионных камерах);
    • локационные датчики, предназначенные для определения и измерения физических параметров среды путем излучения и приема отраженных от объектов сигналов — как правило, электромагнитных волн (в частности, света) или звука;
    • температурные датчики;
    • химические датчики.

1.2 Классификация промышленных роботов

Роботы подразделяются на следующие классы информационные и управляющие; мобильные (движущиеся); манипуляционные.

Манипуляционные роботы относят к обширному классу машин, оснащаемых манипуляторами.

Манипулятор (М) — устройство для выполнения двигательных функций, аналогичных функциям руки человека при перемещении объектов в пространстве, оснащенное рабочим органом.

По методу управления все М можно разделить на биотехнические (с ручным управлением), автоматические и интерактивные (со смешанным управлением). Автоматические М, в свою очередь, подразделяются на автооператоры и промышленные роботы .

Лвтооператор (А) — автоматическая машина, состоящая из М (или совокупности М и устройства передвижения) и непрограммируемого устройства управления.

Промышленный робот (ПР) — автоматическая машина, стационарная или передвижная, состоящая из исполнительного устройства в виде М, имеющего несколько степеней подвижности, и перепрограммируемого устройства программного управления, предназначенная для выполнения в производственном процессе двигательных (манипуляционных или мобильных) и управляющих функций (ГОСТ 25686—85). В технической литературе часто встречается и более короткое определение: ПР — перепрограммируемый автоматический М промышленного применения.

Таким образом, промышленные роботы можно подразделить на следующие три типа (каждый из которых, в свою очередь, подразделяют на несколько разновидностей :

  • Автоматические роботы:
  • Программные роботы (роботы с программным управлением) — простейшая разновидность автоматически управляемых промышленных роботов, до сих пор широко используемых в силу их дешевизны на различных промышленных предприятиях для обслуживания несложных технологических процессов. В таких роботах отсутствует сенсорная часть, а все действия выполняются циклически по жесткой программе, заложенной в память запоминающего устройства.
  • Адаптивные роботы (роботы с адаптивным управлением) — роботы, оснащенные сенсорной частью (системой очувствления) и снабженные набором программ. Сигналы, поступающие к системе управления от датчиков, анализируются ею, и в зависимости от результатов принимается решение о дальнейших действиях робота, предполагающее переход от одной программы к другой (смена технологической операции). Аппаратное и программное обеспечение — в принципе то же, что и в предыдущем случае, но к его возможностям предъявляются повышенные требования.
  • Обучаемые роботы — роботы, действия которых полностью формируются в ходе обучения (человек при помощи специальной платы задает порядок действий робота, и этот порядок действий записывается в память запоминающего устройства).
  • Интеллектуальные роботы (роботы с элементами искусственного интеллекта) — роботы, способные с помощью сенсорных устройств самостоятельно воспринимать и распознавать обстановку, строить модель среды, и автоматически принимать решение о дальнейших действиях, а также самообучаться по мере накопления собственного опыта деятельности.
  • Биотехнические роботы:
  • Командные роботы (роботы с командным управлением) — манипуляторы, в которых человек-оператор дистанционно задает с командного устройства движение в каждом сочленении (строго говоря, это — не роботы в полном смысле слова, а «полуроботы»).
  • Копирующие роботы (роботы с копирующим управлением) — манипуляторы, копирующие действия приводимого в движение оператором задающего устройства, кинематически подобного исполнительному механизму манипулятора (как и в предыдущем случае, такие манипуляторы можно считать «полуроботами»).
  • Полуавтоматические роботы — роботы, при управлении которыми человек-оператор задает лишь движение рабочего органа манипулятора, а формирование согласованных движений в сочленениях система управления роботов осуществляет самостоятельно.
  • Интерактивные роботы:
  • Автоматизированные роботы (роботы с автоматизированным управлением) — роботы, чередующие автоматические режимы управления с биотехническими.
  • Супервизорные роботы (роботы с супервизорным управлением) — роботы, выполняющие автоматически все этапы заданного цикла операций, но осуществляющие переход от одного этапа к другому по команде человека-оператора.
  • Диалоговые роботы (роботы с диалоговым управлением) — автоматические роботы (любой разновидности), способные взаимодействовать с человеком-оператором, используя язык того или иного уровня (включая подачу текстовых или голосовых команд и ответные сообщения робота).

По характеру выполняемых операций все промышленных роботов подразделяют на три группы, имеющие различные производственно-технологические признаки.

  1. Технологические (производственные) роботы (ТПР) выполняют основные операции технологического процесса. Они непосредственно участвуют в технологическом процессе в качестве производящих или обрабатывающих машин, выполняющих такие операции, как гибка, сварка, окраска, сборка и т. п.
  2. Вспомогательные (подъемно-транспортные) роботы (ВПР) выполняют действия типа взять-перенести-положить. Их применяют при обслуживании основного технологического оборудования для автоматизации вспомогательных операций установки-снятия заготовок, деталей, инструмента и оснастки, очистки баз деталей и оборудования, питания конвейеров, а также на транспортно-складских и других операциях.
  3. Универсальные роботы (УПР) выполняют разнородные технологические операции - основные и вспомогательные, т. е. они сочетают в себе признаки первых двух групп. Данный термин характеризует промышленных роботов как по характеру выполняемых операций, так и по степени специализации (см. ниже).

Промышленная робототехника, история , классификация, принцип работы, структура, применение

2. Основные задачи выполняеые промышленными роботами

Рассмотрим конкретные задачи, которые роботы решают в настоящее время на промышленных предприятиях. Их можно разделить на три основных категории:

  • - манипуляции заготовками и изделиями
  • - обработка с помощью различных инструментов
  • -сборка.

2.1 Манипуляции изделиями и заготовками

При разгрузочно-загрузочных и транспортных операциях робот заменяет пару человеческих рук. В его обязанности не входят особенно сложные процедуры . Он всего лишь многократно повторяет одну и туже операцию в соответствии с заложенной в нем (роботе) программой . Рассмотрим типичные применения таких роботов .

2.1.1 Загрузочно-разгрузочные работы

Во многих отраслях машиностроительной промышленности используются установки для литья, резки и ковки. В большинстве случаев последовательность выполняемых ими операций весьма проста. Вначале заготовки загружают в производственную установку, которая затем обрабатывает их строго определенным образом, и, наконец, готовые детали извлекают из нее. Загрузку и разгрузку, как правило, выполняют рабочие или в тех случаях, когда применимы средства жесткой автоматизации, специализированные механизмы, рассчитанные на операции только одного вида. Роботы могут здесь оказаться полезными, если характер таких загрузочно-разгрузочных операций время от времени меняется.

Например, в литейном производстве роботы используются как для дозированной разливки расплавленного алюминия , так и для извлечения из пресс-формы затвердевших отливок и охлажденияих . Такой подход обладает двумя преимуществами . прежде всего роботы гарантируют более строгое соблюдение требований технологического процесса : действую и соответствии с заданной программой , они всегда вводят в установку точно дозированное количество металла. Затем в строго определенные моменеты времени они извлекают из нее отформованные детали. Благодоря точному соблюдению технологического процесса строго соблюдаются и характеристики изделий .

Второе преимущество данного подхода заключается в том , что значительно облегчается работа оператора . Извлечение раскаленного куска металла из пресс-формы одна из мало привлекательных работ , и желательно , чтобы ее выполнял робот . Таким образом роль человека сводится к контролю за протеканием процесса и управлению действиями робота с помощью компьютера.

2.1.2 Перенос изделий с одной производственной установки на другую

Во многих отраслях машиностроительной промышленности погрузочно-разгрузочные механизмы предназначены для перемещения изделий с одного производственного участка на другой . И при выполнение таких перемещений роботы играют немаловажную роль .

На заводе фирмы IBM в Пикипси (шт. Нью-Йорк), выпускающем компьютеры, роботы загружает магнитные диски в систему, где на них записывается необходимая информация. Программа , управляющая роботом , содержит инструкции относительно того, в какую из четырех установок для записи следует загружать тот или иной “пустой” диск. Кроме того, программа задает конкретный набор команд, который соответствующая установка должна занести на диск . Тот же робот осуществляет и два других этапа этого технологического процесса. Он извлекает диск из записывающей установки и помещает его в устройство, которое струей сжатого воздуха прижимает к поверхности диска самосклеивающуюся метку. Затем робот вынимает диск с помощью захватного приспособления и упаковывает его конверт.

Подобный робот разработан и внедрен на английском автомобилестроительном заводе. Он передвигается на гусеницах между пятью производственными участками завода. Робот извлекает пластмассовую деталь автомобиля из установки для инжекторного пресования и последовательно переносит деталь на доводочные участки, где с нее снимаются облои и заусенцы. Далее робот помещает деталь на специализированный станок, который полирует ее. И наконец деталь перемещается с полировального станка на конвеер.

2.1.3 Упаковка роботами

Практически все бытовые и промышленные товары необходимо упаковывать, и для роботов не представляет сложности поднимать готовые изделия и помещать в какую-либо тару.

На заводах одной из кондитерских фирм Англии специализированные роботы занимаются укладкой конфет в коробки. Эти машины весьма сложны и совершенны. Во-первых они обращаются с продукцией очень аккуратно: сжав шоколадное изделие, они могут нарушить его форму или раздавить его. Во-вторых, робот соблюдает высокую точность при укладке конфет в коробки, помещая их в определенные ячейки коробки.

2.1.4 Погрузка тяжелых предметов на конвейер или паллеты

Помимо упаковки миниатюрных изделий, а также промышленных и бытовых товаров роботы иногда выполняют и погрузку тяжелых предметов. По существу они здесь заменяют подъемно-транспортные машины, управляемые оператором-человеком.

2.2 Обработка деталей и заготовок

Хотя роботы, выполняющие обработку изделий с помощью различных инструментов и нашли пока менее широкое применение, чем аналогичное оборудование для транспортировки деталей и заготовок, они про-демонстрировали свою эффективность при решении многих задач.

2.2.1 Сварка роботами

Эта операция чаще всего выполняется с помощью роботов , предназначенных для манипулирования инструментом . роботы могут осуществлять два вида сварки : точечную контактную и дуговую . В обоих случаях робот удерживает сварочный пистолет , который пропускает ток через две соединяемые металлические детали .

В соответствии с управляющей программой сварочный пистолет может перемещатся практически не отклоняясь от заданной траектории . И если программа отлаженна хорошо , сварочный пистолет прокладывает шов с очень высокой точностью .

Большинство роботов для точечной сварки применяется в автомобильной промышленнсти. При сборке автомобиля необходимо выполнить огромное количество операций точечной сварки , чтобы надлежащим образом соединить между собой различные детали кузова, например боковины, крышу и капот. На современных конвейерах эти детали вначале соединяются временно несколькими прихваточными сварными соединениями . Далее кузов перемещается по конвейеру мимо группы роботов, каждый из которых осуществляет сварку встрого определенных местах. Поскольку все кузова, монтируемые на одной производственной линии , для получения высококачественных соединений просто требуется , чтобы робот каждый раз повторял заданную последовательность перемещений .

При очевидных преимуществах такого использования роботов существует ряд и серьезных технических проблем. Запрограммировать робот весьма непросто. Необходимо не только задать точный маршрут движения манипулятора, но и подготовить инструкции, в соответствии с которыми регулируется напряжение и сила тока в каждой точке маршрута. А эти параметры могут меняться, например, в зависимости от толщины свариваемого материала или от того, какую форму имеет прокладываемый шов - прямую или криволинейную.

Также необходимо сконструировать фиксаторы , удерживающие детали в процессе сварки таким образом, чтобы сварка осуществлялась при высокой точности позиционирования. Когда сварочный пистолет держит человек , он способен учитывать незначетельные смещения заготовки. Сварщик-человеку лишь слегка сместит инструмент, с тем чтобы выполнить шов в заданном месте . Робот же не способен принимать подобные решения , если фиксаторы допускают перекос или смещение, то существует вероятность того ,что сварные швы будут расположенны с отклонением. Кроме того, фиксатор должен быть таким, чтобы манипулятор имел доступ к детали с разных сторон.

Следующая проблема касается допусков на изготавливаемые детали. Сварщик-человек принимает во внимание неизбежные отклонения в размерах, но роботу подобная коррекция не под силу. Таким образом, когда сварка осуществляется с помощью автоматики, допуски на детали, изготавливаемые на других участках предприятия, должны быть минимальными.

Характер воздействия, которое роботы оказывают на другие этапы производственного процесса (весьма вероятно , что оно приведет к тесной привязке всех технологических операций ), называется “принципом домино” в робототехнике.

2.2.2 Обработка резаньем роботами

2.2.2.1 Сверление роботами

Как правило операцию сверления осуществляют на станке. При использовании робота в его захватном приспособлении закрепляется рабочий инструмент , который перемещается над поверхностью обрабатываемой детали , высверливая отверстия в нужных местах . Преимущество подобной процедуры проявляется в тех случаях , когда приходится работать с крупногабаритными и массивными деталями или проделывать большое число отверстий.

Операции сверления играют значительную роль в производстве самолетов: они предшествуют клепке, при которой в отверстия вставляются миниатюрные зажимные детали, скрепляющие между собой два листа металла. В деталях самолетов необходимо проделывать сотни, а то и тысячи отверстий под заклепки, и вполне естественно , что такую операцию поручили роботу .

Английская компания изготавливает детали механизма бомбосбрасывания, предназначенного для истребителя “Торнадо”. Механизм представляет собой цилиндрическую конструкцию длиной примерно 6м, к которой требуется приклепать кожух из восьми металлических панелей. В кожухе необходимо просверлить около 3000 отверстий под заклепки. Проблема заключалась в том, как добиться, чтобы робот, оснащенный высокоскоростной сверлильной головкой , проделывал отверстия точно в заданных местах .

Инженеры пришли к выводу, что данную проблему можно решить следующим образом: рабочий просверливает ряд эталонных отверстий (примерно через метр друг от друга) вдоль панелей , которые размещаются надлежащтм образом поверх цилиндрической конструкции . Манипулятор с закрепленным в его зажиме сенсорным зондом (а не сверлом) перемещается над поверхностью заготовки , посылая в память робота данные о местонахождении эталонных отверстий . Затем робот расчитывает точные координаты остальных отверстий , исходя из этих базовых точек . Затем робот , завершив операцию сверления , удаляет оставшиеся в отверстиях крошечные частицы металла специальным инструментом.

2.2.2.2 Бесконтактная обработка заготовок роботами

Из-за малой жесткости и недостаточной твердости, роботы не могут проводить обработку твердых материалов резаньем. Поэтому инженеры изучают бесконтактные методы обработки материалов, подобных металлу или пластику. Для этой цели, в частности, используется лазер. В рабочем органе робота закреплен прибор , который направляет высокоэнергетическое когерентное излучение лазера (для чего нередко используется волокно-оптическая система передачи) на обрабатываемую заготовку . Лазер может с высокой точностью резать пластины из металла, в частности стали. Робот перемещает рабочий орган над обрабатываемым листовым материалом по траектории, определяемой программой. Программой же регулируется интенсивность светового луча в соответствии с толщиной нарезаемого материала .

Другой бесконтактный метод резанья основан на использовании струи жидкости. Такой подход впервые применила компания “Дженерал моторс”. На ее заводе в Адриане установлена система с 10 роботами, изготавливающая пластмассовые детали нефтеналивных цистерн. Восемь из десяти роботов напрявляют водяные струи под высоким давлением на перемещаемые конвеером пластмассовые листы. Эти струи прорезают в исходном материале ряд отверстий и щелей, а также удаляют лишние элементы пластмассовых прессованых деталей. по утверждению представителей компании “Дженерал моторс”, подобная роботизированная система весьма экономична , поскольку исключает износ инструмента и позволяет повысить качество операций резанья. Поскольку система управляется программой, которая находится в памяти центрального компьютера, для контроля и обслуживания всех 10 роботов требуется только два оператора.

2.3 Нанесение различных составов на поверхность роботами

На большенстве предприятий после таких операций, как резанье, производится обработка поверхности только что изготовленных деталей (чаще всего окраска). Это еще один тип производственных операций , которые способен выполнять робот если его оснастить пульверизатором. В память робота закладывается программа, обеспечивающая выполнение определенной, многократно повторяемой последовательности перемещений. Одновременно программа регулирует скорость разбрызгивания краски. В результате на поверхности окрашиваемой детали образуется равномерное покрытие, причем нередко робот обеспечивает более высокое качество окраски, чем человек, которому свойственна неточность движений. Среди других процедур обработки поверхности можно отметить напыление антикоррозийных жидкостей на листы металла для защиты их от химического или физического воздействия окружающей среды, а также нанесение клеевых составов на поверхность деталей подлежащих соединению. Автомобилестроительные компании исследовали возможность применения последней операции на этапе окончательной “подгонки” готовых узлов, в частности при монтаже таких элементов, как хромовые вкладыши на кузове автомобиля. При выполнении подобных операций робот помещают в оболочку, которая защищает его от попадания клея и других связующих веществ. Его также можно “обучить” тому, чтобы он время от времени самостоятельно очищался, погружая захватное приспособление в очищающую жидкость.

2.4 Чистовая обработка роботами

Самой “непопулярной” операцией в механообработке , которая к тому же труднее потдается автоматизации, является, пожалуй, удаление заусенцев, посторонних частиц и зачистка.

Такая чистовая обработка-весьма непростая процедура. Рабочий подносит обрабатываемую деталь к абразивному инструменту , который стачивает острые края и шероховатости на поверхности изделия . Данная процедура занимает важное место в технологическом процессе , однако выполнять ее вручную весьма непросто.

Возможности использования роботов для окончательной обработки изделий исследовались во многих странах. Основная трудность здесь состоит в том, что роботы не обладают естественной для человека способностью контролировать качество своей работы, робот не может менять последовательность своих действий, если он не снабжен соответствующими датчиками. Английская фирма, специализирующаяся на изготовлении соединительных элементов водопроводных труб, осуществила проект, который позволил оснастить робот простейшей системой машинного“ зрения в виде телевизионной камеры. Предположим, робот держит какую-то деталь, например латунный водопроводный кран; телекамера передает изображение крана в компьютер, который в свою очередь регулирует прижатие шлифовального ремня, стачивающего неровности на поверхности этой литой детали. Кроме того, компьютер управляет перемещением манипулятора робота. Таким образом, действия всех компонентов системы - телекамеры, основного манипулятора, регулирующего прижатие шлифовального ремня,-взаимно скоординированны.

2.5 Испытания и контроль роботами

После того как изготовлена деталь или смонтировано несколько узлов, обычно проводится их испытание с целью выявления возможных дефектов. Тщательному контролю подвергаются линейные размеры деталей . Все измерительные операции являются частью повседневных задач , решаемых на всех предприятиях мира . Роботы способны облегчить их выполнение . Для этой цели роботы оснащаются миниатюрными оптическими датчиками ; как правило, это светодиоды, обьединенные с полупроводниковыми светочувствительными приборами. Облучая проверяемую поверхность лучом определенной частоты, подобный датчик принимает отраженное от поверхности излучение, имеющее туже частоту. Робот, в соответствии с заложенной в нем программой, перемещает датчик от одной точки контролируемого изделия к другой. по результатам измерения интервала времени между моментом испускания светового импульса и его приема после отражения рассчитывается форма проверяемой поверхности. Все эти действия выполняет компьютер данной автоматизированной системы.

Операции подобного рода позволяют избежать использование таких инструментов, как микрометры и штангенциркули. Подобные робототехнические средства впервые использовала компания “Дженерал моторс” для контроля формы и размеров автомобильных деталей. При использовании такой роботизированной системы отпадает необходимость в отправке изделий на специальные пункты контроля качества - соответствующие процедуры можно осуществлять непосредственно на конвеере , не прерывая производственного процесса.

2.6 Сборка роботами

Большой объем работ на современных предприятий приходится на сборочные операции, однако многие из них требуют особо мастерства и слишком сложны для машины. В связи с этим значительная часть сборки до сих пор выполняется вручную . Тем не менее ряд сборочных процессов уже автоматизирован ; это относится главным образом к относительно простым и многократно повторяющимся операциям .

На примере фирмы IBM можно проследить, как проходили эксперименты по применению роботов в сборочных процессах. Эта крупнейшая фирма по производству компьтеров не только продает роботы, предназначенные для сборки, но и использует их на собственных предприятиях во многих странах. На заводе этой компании в Гриноке (Шотландия) занимаются созданием “островков автоматизации” - комплексов, содержащих большое количество компьютеризированных механизмов, которыми производят сборку изделий при минимальном участии человека . По оценке специалистов фирмы IBM , в результате автоматизации ежегодный объем продукции предприятия вырос в 10 раз по сравнению с 1974 годом, тогда как число работающих на нем осталось практически неизменным.

Один из таких “остравков” представляет собой производственную линию, на которой изготавливаются логические блоки с силовыми каскадами. Линия включает процессоры и источники питания для дисплеев, входящих в состав микрокомпьтеров. На линии производится сборка четырех компонентов: Двух частей пластмассового корпуса устройства, блока электрических цепей и пластмассовой платы со смонтированным на ней набором микросхем.

Для монтажа каждого блока трабуется всего два винта, которые подаются в рабочие органы роботов специальными механизмами - питателями. Роботы сами вводят винты в соответствующие отверстия изделия. Для управления всей производственной линией достаточно пяти человек. По данным фирмы IBM, для изготовления такого же количества устройств традиционными методами ручной сборки потребовалось бы вчетверо больше рабочих.

Проявляется тенденция к созданию связей , в рамках предприятия , между системами автоматической сборки подобных описанной выше. Например с помощью автоматических транспортых средств , которые перемещают изделия , находящихся на тех или иных стадиях готовности.

2.7 Монтаж печатных плат роботами

Еще одна отрасль производства, где роботы-сборщики могли бы найти широкое применение монтаж электронных компонентов на печатных платах. Некоторые из таких операций могут выполнять специализированные сборочные комплексы, однако, по существу , они представляют собой манипуляторы, рассчитанные на решение строго определенных задач; их нельзя запрограммировать таким образом , чтобы они выполняли какие-то другие операции или манипулировали нестандартными компонентами. Поэтому при использовании подобных установок предназначенных для узкоспециализированного монтажа комплекты компонентов стандартной формы загружаются в накопительные желоба многоячеечных магазинов, похожих на патронташ. Эти магазины перемещаются мимо механического захвата, который поочередно извлекает оттуда компоненты и устанавливает их в нужные места на плате.

Заключение

Как показал опыт внедрения робототехника, является новой формой технической и организационной ячейки, наиболее полно отвечающей потребностям современного производства. Робототехника — гибкая, экономная и рациональная форма обработки деталей и изделий более высокой стоимости и лучшего качества средними и малыми сериями. Робототехника реализует стремление к снижению напряженности человека в работе, связанной с необходимостью приноравливаться к циклу машины, приводит к замене конвейерных линий сборочными бригадами, в основу управления которыми положен бригадный подряд.

Вау!! 😲 Ты еще не читал? Это зря!

  • робот

А как ты думаешь, при улучшении промышленная робототехника, будет лучше нам? Надеюсь, что теперь ты понял что такое промышленная робототехника, промышленный робот и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Робототехника

Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.

создано: 2014-08-21
обновлено: 2024-11-14
342



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Робототехника

Термины: Робототехника