Лекция
Привет, Вы узнаете о том , что такое некоторые важные замечания к формуле разложения, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое некоторые важные замечания к формуле разложения , настоятельно рекомендую прочитать все из категории Теоретические основы электротехники.
Последовательность расчета переходных процессов
операторным методом
1. Определение независимых начальных условий путем расчета докоммутационного режима работы цепи.
2. Составление операторной схемы замещения цепи (для простых цепей с нулевыми начальными условиями этот этап может быть опущен).
3. Запись уравнений по законам Кирхгофа или другим методам расчета линейных цепей в операторной форме с учетом начальных условий.
4. Решение полученных уравнений относительно изображений искомых величин.
5. Определение оригиналов (с помощью формулы разложения или таблиц соответствия оригиналов и изображений) по найденным изображениям.
В качестве примера использования операторного метода определим ток через катушку индуктивности в цепи на рис. 1.
С учетом нулевого начального условия операторное изображение этого тока
.
Для нахождения оригинала воспользуемся формулой разложения при нулевом корне
, | (1) |
где , .
Корень уравнения
.
Тогда
и
.
Подставляя найденные значения слагаемых формулы разложения в (1), получим
.
Воспользовавшись предельными соотношениями, определим и :
Формулы включения
Формулу разложения можно использовать для расчета переходных процессов при нулевых и ненулевых начальных условиях. Об этом говорит сайт https://intellect.icu . Если начальные условия нулевые, то при подключении цепи к источнику постоянного, экспоненциального или синусоидального напряжения для расчета переходных процессов удобно использовать формулы включения, вытекающие из формулы разложения.
, | (2) |
где - входное операторное сопротивление двухполюсника при определении тока в ветви с ключом (при расчете тока в произвольной ветви это операторное сопротивление, определяющее ток в ней по закону Ома); - к-й корень уравнения .
.
В качестве примера использования формулы включения рассчитаем ток в цепи на рис. 2, если в момент времени t=0 она подсоединяется к источнику с напряжением ; ; .
В соответствии с заданной формой напряжения источника для решения следует воспользоваться формулой (2). В ней . Тогда корень уравнения . Производная и .
В результате
.
Сведение расчета переходного процесса к расчету
с нулевыми начальными условиями
Используя принцип наложения, расчет цепи с ненулевыми начальными условиями можно свести к расчету схемы с нулевыми начальными условиями. Последнюю цепь, содержащую пассивные элементы, можно затем с помощью преобразований последовательно-параллельных соединений и треугольника в звезду и наоборот свести к виду, позволяющему определить искомый ток по закону Ома с использованием формул включения.
Методику сведения цепи к нулевым начальным условиям иллюстрирует рис. 3, на котором исходная схема на рис. 3,а заменяется эквивалентной ей схемой на рис. 3,б, где . Последняя в соответствии с принципом наложения раскладывается на две схемы; при этом в схеме на рис. 3,в составляющая общего тока равна нулю. Таким образом, полный ток равен составляющей тока в цепи на рис. 3,г, где исходный активный двухполюсник АД заменен пассивным ПД, т.е. схема сведена к нулевым начальным условиям.
Следует отметить, что если определяется ток в ветви с ключом, то достаточно рассчитать схему на рис. 3,г. При расчете тока в какой-либо другой ветви АД в соответствии с вышесказанным он будет складываться из тока в этой ветви до коммутации и тока в ней, определяемого подключением ЭДС к пассивному двухполюснику.
Аналогично можно показать, что отключение ветви, не содержащей индуктивных элементов, при расчете можно имитировать включением в нее источника тока, величина которого равна току в ветви до коммутации, и действующему навстречу ему.
Переходная проводимость
При рассмотрении метода наложения было показано, что ток в любой ветви схемы может быть представлен в виде
,
где - собственная (к=m) или взаимная проводимость.
Это соотношение, трансформированное в уравнение
, | (3) |
будет иметь силу и в переходном режиме, т.е. когда замыкание ключа в m-й ветви подключает к цепи находящийся в этой ветви источник постоянного напряжения . При этом является функцией времени и называется переходной проводимостью.
В соответствии с (3) переходная проводимость численно равна току в ветви при подключении цепи к постоянному напряжению .
Переходная функция по напряжению
Переходная функция по напряжению наиболее часто используется при анализе четырехполюсников.
Если линейную электрическую цепь с нулевыми начальными условиями подключить к источнику постоянного напряжения , то между произвольными точками m и n цепи возникнет напряжение
,
где - переходная функция по напряжению, численно равная напряжению между точками m и n схемы при подаче на ее вход постоянного напряжения .
Переходную проводимость и переходную функцию по напряжению можно найти расчетным или экспериментальным (осциллографирование) путями.
В качестве примера определим эти функции для цепи на рис. 4.
В этой схеме
,
где .
Тогда переходная проводимость
Переходная функция по напряжению
Литература
Контрольные вопросы
Ответ: .
если : ; ; . |
Ответ: |
Исследование, описанное в статье про некоторые важные замечания к формуле разложения, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое некоторые важные замечания к формуле разложения и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Теоретические основы электротехники
Из статьи мы узнали кратко, но содержательно про некоторые важные замечания к формуле разложенияОтветы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.
Комментарии
Оставить комментарий
Теоретические основы электротехники
Термины: Теоретические основы электротехники