Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

3.4 Физико-химические методы диагностики - 3. МЕТОДЫ ДИАГНОСТИКИ ЭЛЕКТРОТЕХНИЧЕСКОГО ОБОРУДОВАНИЯ

Лекция



Это окончание невероятной информации про методы диагностики.

...

Локализация местоположения источника сигналов ЧР, проведенная ориентировочно путем сравнения электрических и электромагнитных сигналов в различных точках оборудования, и более точно - по задержке акустических сигналов, очень помогает при анализе данных. Идентификация дефектов осуществляется исходя из полуэмпирических данных и накопленного опыта. На уровне сегодняшних знаний идентификация типа источника ЧР по данным, полученным в реальных условиях эксплуатации, является достаточно трудоемкой задачей и требует большого опыта и высокой квалификации. Несмотря на существующие данные об АФД дефектов различного типа, при анализе требуется хорошее знание конструкции и параметров конкретного оборудования, условий проведения измерения и т.д. Кроме того, очень суще-ственным является комплексное использование всех данных, полученных другими диагностическими средствами (измерение сопротивления и tgδ изоляции, хроматографии газов в масле, тепловизионного контроля и т.д.) и предыстория контролируемого объекта (срока службы, нагрузки, наличие КЗ и т.д.).

Определение степени опасности источника ЧР. Естественно при ди-агностике состояния изоляции оборудования в основном интересует только один вопрос - сколько оно еще проработает? Определить время, через которое частичные разряды перерастут в полный пробой изоляции в реальных условиях эксплуатации практически невозможно даже без учета экстремальных воздействий (грозовые и коммутационные перенапряжения и т.д.). Поведение ЧР в процессе развития дефекта статистически весьма неоднородно. По существующим данным, амплитуды сигналов ЧР непосредственно перед пробоем даже уменьшаются, хотя интенсивность их, как правило, растет. Поэтому на сегодня не существует сколько-нибудь точных методов оценки времени оставшегося до полного пробоя изоляции. Наличия экстремальных воздействий еще более усугубляет ситуацию. Однократное измерение сигналов ЧР не позволяет дать надежную оценку степени опасности дефекта и времени безаварийной работы оборудования. Периодическое измерение характеристик сигналов ЧР позволяют оценить скорость развития дефекта. Скорость изменения характеристик ЧР резко возрастает в предпробойной стадии, что служит достаточно хорошим указателем на достижение дефектом этой стадии развития. Именно высокая скорость изменения характеристик сигналов ЧР служит достаточно надежным указателем на близость полного пробоя.

Для определения степени развития дефекта система измерения сигналов ЧР должна обеспечивать запись амплитудно-фазовых характеристик сигналов ЧР с хорошей статистикой (500 - 5000 периодов сети). Наиболее удобным является накопление данных за каждые 10 - 15 минут в течение периода от нескольких часов до нескольких суток. Необходима также до-статочно точная локализация источника ЧР для оценки ослабления сигналов и, соответственно, величины ЧР в точке возникновения.

При наличии этих данных (в совокупности с данными хроматографии и др.) можно определить вероятную стадию развития дефекта - начальную, среднюю и конечную (предпробойную). Такое деление несколько условно, однако позволяет предложить некоторые действия. Например, если дефект находится в начальной стадии, оборудование можно оставить в работе и поставить на периодический контроль по газам в масле, tgδ изоляции и т.д. На средней стадии при повышенном содержании газов в масле можно рекомендовать плановый вывод в ремонт или продолжение эксплуатации с учащенным контролем параметров изоляции и их тренда. Если это конечная стадия, скорость нарастания газов велика и идет нагрев изоляции (на этой стадии тепловизионный контроль уже может дать результаты), тогда следует немедленно выводить оборудование из работы.

3.4 Физико-химические методы диагностики

Как правило, основу оперативных методов диагностики электрооборудования составляют физико-химические методы. Энергетическое воздействие на изоляцию электрических устройств приводит к изменениям на молекулярном уровне вне зависимости от типа изоляции, завершающимся химическими реакциями с образованием новых химических соединений. Энергетическому воздействию подвержены все элементы изоляции. Применительно к жидкой углеводородной изоляции, каковой являются минеральные масла, и к другим органическим жидкостям, эти виды воздействия инициируют химические процессы разрыва связей С-Н, С-С, в результате чего протекают радикальные реакции, которые с участием кислорода и воды, всегда присутствующих в изоляции, и при повышенной температуре приводят к широкой гамме новых химических соединений: от легких газов - водорода, окислов углерода и легких углеводородов - до сложных кислород-содержащих и высокомолекулярных соединений - спиртов, органических кислот, их солей (мыл), восков. Электрическое воздействие на целлюлозу, являющуюся неотъемлемой частью масляной изоляции (масло-барьерная, бумажно-масляная), также ведет к образованию воды и окислов углерода. Мощные электрические разряды приводят к образованию углерода и воды, тепловое воздействие на бумагу инициирует процессы дегидратации, при-водящие к образованию воды и соединений фуранового ряда. Полимерная изоляция под действием разрядов и факторов естественного старения разрушается с разрывом полимерных связей. Воздействие электрических раз-рядов на газообразную изоляцию приводит к образованию химически активных веществ, в свою очередь влияющих на твердую изоляцию из композиционных или керамических материалов. Таким образом, физико-химический диагностический контроль основан на объективной реальности: вследствие каких-либо энергетических воздействий в изоляции электрических аппаратов протекают химические процессы деградации изоляции, по конечным продуктам которой можно судить о количественной характеристике энергетического воздействия и степени разрушения изоляции. Образование новых химических соединений является идеологической основой физико-химической диагностики, а определение количества вновь образованных характерных компонентов и скорости их образования лежит в основе определения состояния изоляции и глубины энергетических воздействий на нее.

Методы физико-химического диагностического контроля имеют свои преимущества и недостатки. Среди преимуществ - независимость физико-химических определений от электрических показателей, т.е. последние не создают помех для измерения.

В настоящее время известно более 50 физико-химических методов ди-агностического контроля, из которых для решения задач диагностирования электротехнического оборудования нашли применение следующие методы.

Вольтампермия – электрохимический метод количественного и качественного анализа и исследования веществ, основанный на определении за-висимости между силой тока в цепи электролитической ячейки и напряжением поляризации Е при электролизе раствора или расплава изучаемого вещества.

Электрохимический метод – анализ физико-химических свойств ионных систем, а также явлений, возникающих на границе двух фаз с участием заряженных частиц (ионов и электронов).

Инфракрасная спектроскопия – исследует колебательные и вращательные переходы в молекулах, используя спектры испускания, поглощения и отражения.

Фотометрия – измерение экстинкций при установленных длинах волн для определения концентраций растворов.

Нефелометрия – измерение рассеяния света мутными растворами и суспензиями.

Масс-спектрометрический метод – основан на свойстве ионов газов, ускоренных электрическим полем, отклоняться и двигаться в однородном магнитном поле по различным траекториям, зависящим от массового числа ионов.

Атомно-эмиссионная спектроскопия – измерение параметра линейчатого спектра возбужденных атомов для определения природы и количества определенных элементов.

Спектрофотометрия – осуществляющая фотометрирование через сравнение измеряемого потока излучения с эталонным.

Кондуктометрический метод – совокупность электрохимических методов исследования и анализа вещества, основанных на измерении электрической проводимости электролитов.

Атомно-абсорбционная спектроскопия – метод элементного анализа и исследования по атомным спектрам поглощения.

Ионнообменная и жидкостная хроматография – основаны на разделительной способности разделяемых ионов в растворе к ионному обмену с ионитом (неподвижная фаза).

Газовая хроматография – основана на различии скоростей движения концентраций зон исследуемых компонентов, которые перемещаются в по-токе подвижной фазы (элюента) вдоль слоя неподвижной.

Жидкостная хроматография – хроматография, в которой подвижной фазой служит жидкость. В зависимости от агрегатного состояния неподвижной фазы, различают распределительную (или жидко-жидкофазную) и адсорбционную (жидко-твердофазную).

Тонкослойная хроматография – основана на различии скоростей перемещения компонентов анализируемой смеси в плоском тонком слое сорбента при движении по нему растворителя (элюента).

В каждом конкретном случае из компонентов химико-аналитических признаков формируются химико-аналитические коды определяемых веществ, позволяющих селективно и с требуемой точностью произвести химический анализ. Такими компонентами являются: индексы хроматографического удерживания, интенсивности пиков спектров, градуировочные коэффициенты детекторов и другие, включая двойные и тройные соотношения компонентов. Эти коды поддаются математической формализации, что позволяет создать компьютерные программы надежной идентификации определяемых веществ.

Хроматографический анализ растворенных газов является общепризнанным в мировой практике экономически выгодным и наиболее эффективным способом предупреждения повреждений маслонаполненного электрооборудования. Контроль растворенных газов является обязательной частью большинства программ обслуживания по состоянию.

3.5 Оптические методы

Оптические методы диагностики основаны на анализе взаимодействия оптического излучения (ОИ) с объектом контроля (ОК). Информационными параметрами ОИ являются пространственно-временные распределения его амплитуды, частоты, фазы, поляризации и степени когерентности. Для по-лучения диагностической информации используют изменение этих пара-метров при взаимодействии ОИ с ОК в соответствии с явлениями интерференции, дифракции, поляризации, преломления, отражения, поглощения, рассеяния, дисперсии света, также изменение характеристик самого ОК под действием света в результате эффектов фотопроводимости, фотохромизма, люминесценции, электрооптических, механооптических (фотоупругость), магнитооптических, акустооптических и других явлений.

Основными информационными параметрами объектов оптического контроля являются их спектральные и интегральные фотометрические характеристики, которые в общем случае зависят от строения вещества, его температуры, физического (агрегатного) состояния, микрорельефа, угла падения излучения, степени его поляризации, длины волны. Использование оптического излучения как носителя информации перспективно. Электро-магнитное поле по природе многомерно, что позволяет вести многоканальную (многомерную) обработку информации одним устройством с большой скоростью, определяемой скоростью света в данной среде.

При работе с приборами визуального контроля важно правильно ис-пользовать свойства зрения оператора. Зрение (видение) является сложным динамическим нелинейным процессом, включающим сканирующие, конвергенционные (фокусирующие) и адаптационные (изменение диаметра зрачка) движения глаз и обработку зрительной информации в центральной нервной системе человека. В практической работе оператор решает зрительную за-дачу, состоящую из следующих элементов: обнаружение из фона, различение в деталях и распознавание конкретного объекта как обобщенного образа. В ряде случаев необходимо измерение изображения объекта или другие операции, связанные с его обработкой. Вероятность успешного решения зрительных задач зависит от контраста объекта, его углового размера, яр-кости фона и времени наблюдения.

В составе оптических приборов контроля наиболее перспективно применение лазерных источников. Применение лазеров позволяет существенно расширить границы традиционных методов диагностики и создать принципиально новые методы оптической диагностики, например, голо-графические, акустооптические и др., основанные на использовании основных свойств лазерного излучения – монохроматичности, когерентности и направленности.

Для контроля геометрии объектов широко применяются оптико-электронные приборы, которые принято делить на фотокомпенсационные, фотоследящие и фотоимпульсные. В отдельную группу выделяют телевизионные, лазерные и растровые системы. Основной частью оптической системы этих приборов является объектив для получения изображения контролируемого изделия. В ряде случаев используют волоконно-оптические световоды. В качестве сканаторов в современных приборах применяют в основном фотодиодные или ПЗС-линейки и двумерные матрицы с дискретной структурой светочувствительного слоя и электронной схемой развертки.

Для контроля деформаций, изменений зазоров и амплитуд вибраций используются лазерные волоконно-оптические интерферометры, позволяющие регистрировать перемещения порядка 0,01 мкм.

Приборы для контроля внутренних поверхностей и обнаружения дефектов в скрытых местах называют эндоскопами и бороскопами. Принцип действия эндоскопов заключается в осмотре объекта с помощью специальной оптической системы, позволяющей передавать изображение на значительное расстояние (до нескольких метров). При этом отношение длины эндоскопа к поперечному сечению >> 1. Существуют линзовые, волоконно-оптические и комбинированные эндоскопы.

Компьютерные технологии в неразрушающем контроле. При рас-смотрении задачи НК как информационного процесса и абстрагировании от используемых физических методов неразрушающего контроля, можно вы-делить следующие три характерные части этого процесса:

- получение первичной измерительной информации с помощью преобразователей и приведение ее в форму удобную для дальнейшей обработ-ки;

- обработка информации и представление результатов обработки в форме пригодной для анализа и дальнейшей интерпретации;

- проведение анализа полученной информации и формирование решения о состоянии контролируемого объекта, возможности его нормально-го функционирования или прогнозирование его остаточного ресурса.

Под преобразователями могут подразумеваться любые устройства как активного, так и пассивного принципа действия, которые обеспечивают взаимосвязь контролируемого физического параметра (или нескольких параметров) с поддающимся регистрации выходным параметром преобразователя (откликом). В ряде методов НК отклик может регистрироваться в форме образа, который может непосредственно подвергаться анализу (капиллярные, оптические методы). В других методах НК используется отклик в форме электрического сигнала, который наиболее удобен для регистрации и дальнейшей обработки. Первичная информация, как правило, регистрируется в виде пространственно-временного распределения откликов. Дальнейшая обработка информации может осуществляться как в аналоговом виде, так и цифровом видах в зависимости от сложности алгоритма и ценовой целесообразности. В настоящее время преобладает тенденция ис-пользования цифровой обработки информации обеспечивающей ряд преимуществ.

В зависимости от используемого метода контроля алгоритмы обработки первичной информации могут отличаться, но в пределе, конечным результатом, наиболее пригодным с точки зрения человеческого восприятия, является изображение контролируемого объекта (в плане, схематичное или в виде трехмерной проекции) на которое нанесено распределение искомой физической величины (например, карта дефектов и их физические параметры). Предполагается, что значения искомой величины достаточно точно реконструируются на основании полученной первичной информации. Кроме визуального представления необходимо иметь количественные значения параметров дефектов, которые необходимы для дальнейших прочностных и ресурсных расчетов, т.е. попутно решить задачу дефектометрии.

При всем разнообразии используемых методов контроля, типов контролируемых параметров и дефектов, количество алгоритмов получения конечного результата не так велико. Оно сводится в основном к различным типам комплексных преобразований, решений систем уравнений и методам обратной реконструкции (типа преобразование Радона, метод SAFT-C и т.п.). Следует отметить, что при использовании нескольких методов НК и сопоставлении полученных результатов, возможно получить сверхсуммарный эффект.

Конечной целью НК является не только получение информации о наличии дефектов и их физических параметрах, но и формирование решения о состоянии контролируемого объекта, возможности его нормального функционирования или прогнозирование его остаточного ресурса. Для ряда объектов можно провести прочностные расчеты и на основании их сделать выводы. Для однотипных объектов выработаны методические рекомендации, формализующие процесс принятия решения. В других случаях требуется эвристический подход или использование ассоциативных решений, принимаемых на основании выборочных тестовых разрушающих испытаний. Часто решение принимается человеком субъективно, на основании накопленного эмпирического опыта.

Данное звено информационного процесса является наименее поддающимся формализации и алгоритмизации. Это обусловлено большим многообразием контролируемых объектов и их физических свойств. Но в ряде случаев, когда существуют отработанные методические рекомендации, целесообразно реализовать их в форме программного обеспечения, которое непосредственно использует результаты предыдущей обработки информации и автоматически генерирует заключение о состоянии объекта контроля. В перспективе для этой цели можно использовать самообучающиеся структуры на основе нейронных процессоров, которые при наличии обратной связи подтверждающей или опровергающей правильность принятого решения могут повышать достоверность принятия решений на окончательном этапе НК. Причем при пространственном разнесении мест получения первичной информации, ее обработки и принятия решений связующим элементом может выступать Internet.

3.7 Диагностические комплексы и мобильные диагностические лаборатории

Автоматизация процессов диагностирования. Использование вы-числительной техники обеспечивает возможность создания гибких автоматизированных систем диагностирования, которые выполняют как отрабо-танные алгоритмы, так и перестраиваются на новые, находящиеся в стадии создания. При этом основой является микропроцессорная техника, которая служит для создания электронных моделей с целью более эффективного прогнозирования надежности оборудования. Наиболее перспективными являются распределенные автоматизированные системы диагностирования.

Рассмотрим систему диагностирования энергоблоков с использованием средств вычислительной техники (рисунок 3.5). Система содержат датчики Д, преобразователи информации АЦП и ЦАП, исполнительное устройство ИУ, нормализаторы Н, коммутатор и ЭВМ. Датчики измеряют характеристики физико-химических процессов, обусловленных дефектами проверяемого объекта.

В современных системах диагностирования энергоблоков используют иерархические структуры: на первом уровне местные системы диагностирования (МСД), на втором – центральные системы диагностирования (ЦСД). Системы диагностирования выполняют различные функции на раз-личных уровнях иерархии, например на первом – обнаружение неисправностей, а на втором – их локализация. Распределение функций по уровням иерархии может быть смешанным.

В сложных системах диагностирования для передачи информации на значительные расстояния применяют специальные телекоммуникационные средства. Во всех системах иерархического типа имеется «инженерный пульт», на котором отображается сводная информация о состоянии техни-ческих устройств для своевременного принятия решения по их эксплуатации.

3. МЕТОДЫ ДИАГНОСТИКИ  ЭЛЕКТРОТЕХНИЧЕСКОГО ОБОРУДОВАНИЯ

Рисунок 3.5 - Система диагностирования энергоблока

В иерархической системе диагностирования объектов с использованием микропроцессоров (рисунок 3.6) отдельные участки объекта проверяются собственными управляющими микропроцессорами (УМ), а оценка результатов производится централизованно.

Ввод – вывод

3. МЕТОДЫ ДИАГНОСТИКИ  ЭЛЕКТРОТЕХНИЧЕСКОГО ОБОРУДОВАНИЯ

Рисунок 3.6 - Иерархическая система диагностирования

Мобильные диагностические лаборатории. Мобильные лаборатории предназначены для диагностики состояния электрооборудования и линий электропередач, а так же для проведения исследовательских, профилактических и ремонтных работ на объектах энергетики промышленных предприятий. Мобильные лаборатории позволяют с максимальной эффективностью использовать высококвалифицированных специалистов, осуществляющих диагностирование электрооборудования и определение мест повреждения электрических сетей. Существующая практика использования мобильных лабораторий показывает, что основными характеристиками, влияющими на эффективность работы, являются безопасность лаборатории, эргономичность, функциональность и надежность. Безопасность лаборатории подразумевает под собой, в первую очередь, защищенность персонала от поражения электрическим током. Наличие визуальной и световой сигнализации, цепей блокировок, устройств аварийного отключения лаборатории существенно снижают вероятность поражения электрическим током. Учитывая, что мобильные лаборатории работают по 300 дней в году в раз-личных погодных условиях, можно сказать, что наличие систем отопления и кондиционирования отсека оператора относится к числу необходимых условий обеспечения безопасности и комфортных условий труда. Эргономичность лаборатории, то есть простота и удобство управления всем оборудованием и измерительными системами лаборатории, также неразрывно связана с проблемой безопасности.

В настоящее время отечественной промышленностью выпускается серии специализированных мобильных диагностических лабораторий МЕГА:

- МЕГА – 1: для диагностики трансформаторов, высоковольтных вводов и испытания оборудования распределительных устройств;

- МЕГА – 2: для испытания силовых кабелей и определения мест повреждений;

- МЕГА – 3: для диагностики высоковольтных выключателей и аккумуляторных батарей;

- МЕГА – 4: полный комплекс диагностики оборудования и кабельных линий;

- МЕГА – 5: для диагностики устройств релейной защиты и автоматики.

Мобильные лаборатории смонтированы на базе автомобилей повышенной проходимости: КАМАЗ, МАЗ, УРАЛ, ГАЗ-3308. Используются также цельнометаллические автомобили-фургоны: Газель 2705 с высокой крышей, Соболь 2752, Ford Transit VAN, БИС-1705, УАЗ-39629, УАЗ-3162, Volkswagen LT-35. Все эти лаборатории предназначены для эксплуатации при температуре наружного воздуха в диапазоне от - 40 до 40 °С.

Контрольные вопросы

1 Какие методы применяются для измерения температуры оборудования?

2 Какие параметры вибрации оборудования используются для решения задач вибродиагностики?

3 В чем различие систем вибрационного мониторинга и диагностики?

4 Какова структура систем вибрационного мониторинга и диагностики?

5 Какими методы осуществляется измерение параметров частичных разрядов?

6 Какие физические и химические явления положены в основу физико-химических методов диагностики?

7 Для решения каких задач диагностики электрических сетей и электрооборудования используются оптические методы?

8 Для решения каких задач диагностики электрических сетей и электрооборудования используется неразрушающий контроль?

9 Перечислите основные методы дефектоскопии. На использовании каких физических явлений они основаны?

10 Что такое интроскопия? На использовании каких физических явлений и методов обработки сигналов основаны различные виды интроскопии?

11 Для решения каких задач диагностики электрических сетей и электрооборудования используются диагностические комплексы и мобильные диагностические лаборатории?

Исследование, описанное в статье про методы диагностики, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое методы диагностики и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Диагностика, обслуживание и ремонт электронной и радиоаппаратуры

Продолжение:


Часть 1 3. МЕТОДЫ ДИАГНОСТИКИ ЭЛЕКТРОТЕХНИЧЕСКОГО ОБОРУДОВАНИЯ
Часть 2 3.4 Физико-химические методы диагностики - 3. МЕТОДЫ ДИАГНОСТИКИ ЭЛЕКТРОТЕХНИЧЕСКОГО ОБОРУДОВАНИЯ

Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.

создано: 2020-05-08
обновлено: 2024-11-14
67



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Диагностика, обслуживание и ремонт электронной и радиоаппаратуры

Термины: Диагностика, обслуживание и ремонт электронной и радиоаппаратуры