Лекция
Это окончание невероятной информации про микроволновая печь.
...
изменена. Таким образом, одна и та же схема может быть использована и для управления микроволновой печью, и доя регулировки расхода топлива в автомобиле.
Сфера применения микроконтроллеров постоянно расширяется. Это связано с тем, что они обладают крупными возможностями при сравнительно низкой себестоимости. В настоящее время в мире ежегодно продаются сотни миллионов микроконтроллеров различного назначения. Практически вся электробытовая техника имеет модели со встроенными микроконтроллерами. В состав некоторых микросхем иногда включается миниатюрная литиевая батарея, и таким образом появляется возможность использовать микроконтроллеры в предметах, которые связаны с электричеством примерно так же, как соленый огурец с теоремой Пифагора. Примером могут служить различные смарт-карты, самонаводящиеся авиабомбы и музыкальные поздравительные открытки. Похоже, недалек тот день, когда микроконтроллерами будут укомплектованы гвозди и туалетная бумага.
В блоках управления микроволновых печей используются простейшие 8-битные контроллеры. Как правило, они относятся к разряду заказных и имеют однократно программируемую память, т.е. указанные микроконтроллеры предназначены для работы исключительно в конкретном устройстве и не могут быть заменены ни на что другое. Заказной характер микроконтроллера означает, что фирма потребитель заказывает его у фирмы производителя под свою конкретную разработку. Следствием этого является то, что из-за ограниченного спроса на эти изделия они практически отсутствуют в свободной продаже. Поэтому, если микроконтроллер вышел из строя, бессмысленно искать ему замену в магазине радиотоваров. Единственное место, где его можно отыскать, это сервисная ремонтная служба компании, производителя данной бытовой техники. Цели и объем данной статьи не позволяют подробно останавливаться на устройстве и описании работы каждого из многочисленного семейства микроконтроллеров. (Для справки: только компания Моторола производит более 300 наименований.) Поэтому мы рассмотрим только общие вопросы, которые позволят как-то ориентироваться в этой проблеме, а конкретные рецепты приводятся непосредственно в описаниях работы некоторых блоков управления.
В состав микроконтроллера входят следующие основные элементы: микропроцессор, оперативное запоминающее устройство (ОЗУ или RAM, в латинской транскрипции), постоянное запоминающее устройство (ПЗУ или ROM), порты ввода-вывода. Дополнительно контроллеры могут комплектоваться различными таймерами, аналого-цифровыми преобразователями и т.п., в зависимости от сферы их применения. Блок-схема типового контроллера представлена на рис. 2.45.
Рис. 2.44. Внешний вид некоторых микроконтроллеров
Основной элемент микроконтроллера — это процессор. Он синхронизирует работу всех остальных устройств и следит за их деятельностью. Кроме того, внутри процессора имеется арифметико-логическое устройство (АЛУ), то условно можно представить как встроенный калькулятор. Во время работы процессор последовательно считывает информацию из памяти, распознает записанные там инструкции и либо сам их исполняет, к примеру, когда требуются вычисления, либо поручает это своим коллегам.
Рис. 2.45. Блок-схема контроллера
Последовательность действий процессора задается программой, хранимой в ПЗУ. Обычно программа записывается в процессе производства микроконтроллера и после этого не может быть изменена. Объем постоянной памяти обычно составляет единицы или десятки килобайт. (Один байт информации позволяет хранить любую цифру, букву кириллицы или латинского алфавита, математические и некоторые другие знаки, всего 256 символов, поэтому он принят в качестве единицы измерения.)
Вводимые пользователем данные (время работы, режим и т.д.) и результаты промежуточных вычислений процессора хранятся в ОЗУ. Информация, хранимая в ОЗУ, в любой момент может быть прочитана процессором или изменена. При отключении питания информация пропадает, в отличие от ПЗУ, где она хранится вечно. Объем ОЗУ в микроконтроллерах невелик и составляет всего несколько сотен байт.
Порты ввода-вывода служат для связи микроконтроллера с внешним миром. Они обеспечивают ввод информации с клавиатуры, ее отображение на индикаторе и выдачу управляющих сигналов на исполнительные устройства, такие, как реле, симисторы, сигнальные зуммеры и т.д. Для согласования по мощности выходы портов иногда подключают к исполнительным устройствам через буферные усилители.
В некоторых печах имеются различного рода датчики (температуры, пустой камеры, веса, впажности и т.д.), которые имеют аналоговый сигнал на выходе. Для преобразования этих сигналов в понятный микроконтроллеру цифровой код служит входящий в его состав аналого-цифровой преобразователь (АЦП). Если печь имеет сразу несколько сенсоров, АЦП может работать в мультиплексном режиме, поочередно отслеживая их отображения.
Передача данных от одного блока к другому осуществляется по магистрали данных. Выходы всех блоков микроконтроллера имеют три устойчивых состояния: логические О и 1, а также об-рыб (так называемое Z-состояние). В последнем случае блок может быть полностью электрически отсоединен от магистрали данных. Это позволяет процессору упорядочить связь между блоками таким образом, чтобы в каждый момент времени к магистрали данных было подключено только по одному выходу и требуемое число входов.
Основной вопрос при ремонте блока управления микроволновой печи — это определить, связана ли поломка с работой микроконтроллера, и если да, то можно ли этому помочь. Необходимо заметить, что подобные поломки встречаются не часто, поэтому, прежде чем грешить на микроконтроллер, нужно убедиться в том, что проблема не связана с более простыми вещами. Прежде всего необходимо убедиться в наличии питания и его соответствии номинальному значению. Имеет смысл просмотреть печатную плату на предмет обнаружения обрывов и закороток. В качестве последних иногда служат плоды пищеварения известных своей прожорливостью и плодовитостью насекомых. Закорачивание может произойти также в клавиатуре. Невозможность запуска может свидетельствовать об отсутствии сигнала блокировки дверцы.
Как уже отмечалось, практически невозможно найти замену неисправному микроконтроллеру. Если он вышел из строя, то у вас имеется два выхода: выбросить блок управления или попы—
таться его исправить. Первое быстрее. Сразу отметим, что применительно к печем российского производства (Берегиня, Электроника-25 и т.д.), в которых контроллер выполнен на основе однокристальной микроЭВМ общего назначения с внешним ПЗУ, подобная дилемма возникает при неисправном ПЗУ. В некоторых печах (к примеру. Gold Star*) вышедший иа строе микроконтроллер иногпа можно искусственно реанимировать, но такое случается относительно редко. Теоретически возможно поставить универсальный программируемый микроконтроллер вместо сломанного. Для этого, к примеру, может сгодиться программируемая однокристальная микроэвм семейства МК51 (российский анапог КМ1816ВЕ51). создательу п своей практике приходилось проделывать подобную процедуру, однако рекомендовать ее для массового использования вряд ли целесообразно.
Основная проблема заключается в написании программы, которая должна обеспечивать управление всеми функциями микроволновой печи с учетом особенностей существующей схемы. Даже у специалиста это может отнять от несколько дней, до нескольких недель. Кроме toio. для прошивки микросхемы требуются компьютер v. программатор. Поэтому мы не 6удег детально останавливаться на этом Вопросе; тот, кто чувствует в себе способность справиться с этой задачей, скорее всего, обойдется без создательских рекомендаций, а неспециалисту лучше не добавлять себе головной боли. Легче не ввязываться, чем развязаться.
При ремонте ВВ части (ИП магнетрона) есть необходимость прозвона ее деталей. Бытовой тестер не эффективен здесь, батарейка низкого напряжения. Некоторые источники советуют проводить проверку ВВ компонентов контрольной лампой накаливания на 15-25 Вт 220В. Делать прозвон ею небезопасно по технике безопасности, к тому же, он не показывает 100% результат.
Безопасней сделать ВВ стенд своими руками: входное сопротивление на тестере на пределе измерения 760 V АС несколько мегом. Касание к синему на схеме даст не более ощущений, чем пользование индикатором-фазоуказателем. Есть только необходимость сделать метки фазы на розетке и вход красного провода по схеме на вилку.
Этот стенд дает больший порог чувствительности, с ним можно найти и элементы на пороге поломки, являющиеся причиной периодических сбоев в функционировании всех узлов:
Помним, что манипуляции с диагностируемой деталью делаем только при условии полностью отключенного от сети питания.
Высоковольтное ИП магнетрона устанавливают по схеме однополупериода с двойным напряжением, это возможно из-за импульсного режима функционирования. Изготовить такой для бытовых нужд можно даже не пытаться, так как он рассчитывается на работы при КЗ вторичной обмотки в течение 5 минут.
Полуволна с положительным показателем с вторичной обмотки трансформатора замыкается посредством высоковольтного диода D и заряжает высоковольтный конденсатор C до уровня своего амплитудного напряжения 2000 В. Полуволна с отрицательным значением посредством того диода проводит дозарядку до 4 кВ, по аналогу с вольтодобавкой старых ТВ. Магнетрон с эмиттерным напряжением стартует генерацию СВЧ, когда проходит разрядка С, цикл запускается заново.
ВВ предохранитель F и резистор разряда R выполняют защитную функцию. F выключает магнетрон, если возникла мгновенная перегрузка с повышением температуры. К примеру, если камеру не загрузили или перегрузили, поместили в нее металлический предмет или не уставный продукт. Прохождение через R проводит быструю разрядку конденсатора, это предохранение от выхода излучения наружу, если была открыта дверца во время работы прибора.
Когда в указанной схеме происходит перегорание F, поток излучения может попасть наружу, если присутствует плохое экранирование или заземление, в перегорающем предохранителе еще долю секунды наблюдается электрическая дуга. По этой причине в некоторых моделях используют схему запитки магнетрона через защитный диод, как на картинке сверху. Так всплески происходить не будут, неудобство заключается в одноразовости диода, пробивает его часто, а цена как у высоковольтного конденсатора. Проверку диода можно провести на таком же стенде, включая прямо и обратно, на тестере отображается около половины напряжения сети. Когда разность составляет от 20% - поломан, при этом прокрутка индукционным мегомметром и тестирование контролькой покажет полную исправность.
Все поломки ВВ ИП заставляют ее работать без прогрева. F сгорает всегда. Сам по себе он представляет плавкий предохранитель, но нить его подпружинена, чтобы быстрей происходило размыкание. Прозванивают его обычным тестером. Конденсатор ВВ проверяют на стенде, тестер по обеим сторонам показывает 10-70 В, исходя из емкости детали, она прописывается на корпусе.
Трансформатор
После теста всех 4 компонентов ВВ проверяют питание трансформатора, запитывающего магнетрон. Нагревание не происход из-за КЗ на межвитковье в обмотках. Тестер здесь ничего не покажет, потому что активное сопротивление обмоток остается неизменным. Оптимально проверить подозрительный трансформатор в специализирующейся на электроизмерениях фирме, в лабораторию РЭС или потребнадзора. Стоимость этой услуги везде невысока.
Проверку можно провести и в домашних условиях. Если присутствует витковое КЗ, ток на холостом ходу трансформатора растет на порядки. Допускаем нарушение, и берем ту самую лампочку-контрольку на 220В 15-25 Вт. Стенд этого не покажет: ток тестера в режиме вольтметра невелик, а амперметр опасен для такой операции.
Контрольку подключаем последовательно с обмоткой ВВ. Использовать другую обмотку очень не безопасно. Найти ее не сложно – она покрыта хорошим слоем изоляции вместе с обмоткой накала, как видно на иллюстрации.
После сбора цепочку подключают к сети на несколько секунд. При рабочем трансформаторе лампочка не загорится или нить прогреется еле-еле, до тускло-красного цвета. Хорошо заметное свечение указывает на присутствие виткового КЗ.
Без стажа диагностики сложно точно сказать, какое свечение называется тусклым, какое заметным. Чтобы быть уверенными в правильности поставленного диагноза, устроим искусственное виткование. Отсоединим от сети цепь, замкнем накоротко накальную обмотку и опять запустим сеть на непродолжительное время. Нить в лампе должна загореться сильнее, чем в первый раз. Свечение осталось таким же или изменилось незначительно – трансформатор неисправен.
Когда все ВВ детали были проверены, а СВЧ так и не проявило себя, скорее всего сломан магнетрон. Чтобы не демонтировать его и СВЧ тракт, диагностику можно провести стандартным тестером, он определит, есть ли в магнетроне внутреннее КЗ. Это может случиться, если внутренняя поверхность катода послоилась.
На одном уровне по частоте с внутренним КЗ по поломкам в магнетроне стоит пробой катодного фильтра (красная стрелка на правом рисунке). Выглядит он как обычный разъем, но представляет собой пару высоковольтных проходных конденсаторов. Повреждать их заливку запрещено – центральный рисунок. В диагностике ничего не даст, а частицы – опасные токсины. Тестером измеряют сопротивление между выводами. Показатель приравнивается к нулевому: выводы запитаны от нити накала, ток близок к 10А при напряжении 6,3В.
Осторожно отвинчиваем обойму с проходными конденсаторами, большинство моделей позволяет это сделать без демонтажа магнетрона и СВЧ тракта. Наличие пробоя видно сразу – правая часть иллюстрации. Если ничего не видно, осторожно отрезаем обойму от индуктивности фильтра и прозваниваем все выводы на стенде. Рабочие проходники тестер определит как ноль во всех случаях. Показывает хотя бы два вольта – присутствует скрытый пробой или утечка под напряжением. Когда показывает полный порядок, но температура в камере не повышается – катод вдруг остался без эмиссии и магнетрон можно выбросить. Такое случается с магнетронами, сильными генераторами, клистронами и лампами бегущей волны (ЛБВ) по причине потери герметичности корпуса, где в норме полный вакуум. В магнетроне могут размагнититься магниты, тогда при запуске сразу же сгорает ВВ предохранитель.
Логическую цепочку завершаем камерой но поломок она ощущает и провоцирует больше, чем другие узлы. Ситуация как 1 на иллюстрации не такая катастрофа, как кажется на первый взгляд: камера имеет специальное покрытие, выдерживающее подобные нагрузки. За исключением тех случаев, когда в ней варят яйцо – перекипевший денатурированный белок очень крепко въедается в покрытие, спасти может только покупка другого агрегата. Очищаем от мусора, вымываем подходящими для этого моющими средствами и изучаем: нет ли царапин более чем 0,1 мм. Теперь вручную проверяем насколько плавно крутится стол и тестируем на экранирование и «сифон». Очень велика вероятность, что микроволновка еще послужит не один год. В ситуации прогоревшего насквозь покрытия как 2 на иллюстрации, использовать ее нельзя. Ни один ремонт не сможет убрать фон.
Наиболее часто можно наблюдать такую картину – печь работает адекватно, загрузка правильная и уже проверенная, видны искры. Моем руки, переносим печь в максимально чистое и сухое помещение, аккуратно убираем крышку выходного окна волновода – когда есть возможность снять ее извне, не трогая СВЧ-тракт. Материал изготовления крышки очень хрупкий. Снаружи она чиста или имеет незаметные загрязнения или повреждения, изнутри увидим другое – 3 и 4 на иллюстрации. Мы видим следы пара от жира и чад.
На замену подбираем точь-в-точь такую же деталь. Некоторые источники могут посоветовать сделать ее из материала 1,5 мм, а это почти в 4 раза толще фирменной, которая приравнивается к 0,4 мм. Если разбираться, то слюда не дает идеального показателя прозрачности для СВЧ, крышка с более толстым показателем набирает излишнюю температуру и жировые пары, срок ее службы гораздо короче оригинальной. Основная проблема в том, что режим нарушится и микроволновка начнет сильно фонить.
В моделях с коротким трактом сняв крышку, увидим внутреннюю часть волновода (если быть точнее, то это выходной резонатор) и антенну (излучатель) магнетрона. Когда на резонаторе цело покрытие, без вздутий, трещин и цветов побежалости, то он подлежит чистке спиртом по описанной выше схеме. Если излучатель потемнел, то его просто достаем из магнетрона и меняем на новый фирменный. Если излучатель старый и прикипел к гнезду, его вынимают аккуратной раскачкой пассатижами, новый устанавливаем только в перчатках, без царапин и грязи на нем.
Помним три основных нюанса. Нельзя самостоятельно снимать магнетрон или пытаться использовать прогоревший излучатель, повернув его на другую сторону. Режим печи нарушится и она будет фонить. Когда был затронут СВЧ тракт, обязательно следует проверить после окончания всех работ печь на утечку излучения по описанному выше методу.
Представленные результаты и исследования подтверждают, что применение искусственного интеллекта в области микроволновая печь имеет потенциал для революции в различных связанных с данной темой сферах. Надеюсь, что теперь ты понял что такое микроволновая печь и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Диагностика, обслуживание и ремонт электронной и радиоаппаратуры
Часть 1 Диагностика и ремонт микроволновой печи
Часть 2 Состав микроволновой печи - Диагностика и ремонт микроволновой печи
Часть 3 Устройство микроволновой печи - Диагностика и ремонт микроволновой печи
Часть 4 - Диагностика и ремонт микроволновой печи
Часть 5 Высоковольтный стенд - Диагностика и ремонт микроволновой печи
Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.
Комментарии
Оставить комментарий
Диагностика, обслуживание и ремонт электронной и радиоаппаратуры
Термины: Диагностика, обслуживание и ремонт электронной и радиоаппаратуры