Лекция
Привет, сегодня поговорим про радиаторы, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое радиаторы, теплоотводы, охлаждение, системы охлаждения, иммерсионное охлаждение, тепловой интерфейс, электроосмос , настоятельно рекомендую прочитать все из категории Конструирование и проектирование электронной аппаратуры.
Теплоотвод(процесс) — процесс отвода теплоты от тела посредством, например, охлаждения жидкости, сжатия воздуха и др.
теплоотвод(устройство) — Компонент, проводящий и рассеивающий тепло от объекта. теплоотводы являются неотъемлемой частью современной электроники, от небольших пластинок, до многопрофильных литых конструкций с развитой поверхностью и устройствах на тепловых трубках. Типичные теплоотводы это опорные конструкции трубопроводов и их компоненты с большой массой, например вентильные приводы или корпуса насосов. Например, в процессе работы ядерного реактора с помощью теплоотвода осуществляется теплоносителем в кипящем состоянии от активной зоны излишков тепла .
Радиатор — устройство для рассеивания тепла, необходимое для поддержания теплового режима различных устройств, например электронных приборов (полупроводниковых приборов, электронных ламп и т.д.);
Система охлаждения электроники — набор средств для отвода тепла от нагревающихся в процессе работы электронных компонентов.
Тепло в конечном итоге может утилизироваться:
По способу отвода тепла от нагревающихся элементов системы охлаждения делятся на:
Также существуют комбинированные системы охлаждения, сочетающие элементы систем различных типов:
развитие существующих средств охлаждения микропроцессоров не успевает за увеличением выделяемой ими тепловой мощности. Модернизация технологических процессов, влияющих на потребляемую отдельным транзистором мощность, на практике не позволяет эффективно "термокомпенсировать" всевозрастающее количество этих самых транзисторов на кристалле. И традиционные процессорные кулеры уже едва справляются с охлаждением новых горячих "камней".
По сложившимся стандартам все полупроводниковые приборы, которые характеризуются выделяемой мощностью менее 3 Вт, могут функционировать без дополнительных теплоотводов. Микропроцессоры 8080, 8086, 80186, 80286 и 80386 прекрасно работали без каких-либо кулеров благодаря тому, что выделяемая ими мощность была порядка тех же 3 Вт, и они намертво впаивались в материнскую плату, используя ее в качестве дополнительного теплоотвода. i80486 стал первым "сокетным" процессором для РС, и он же первым потребовал специализированного охлаждения (впрочем, тогда было достаточно маленького кулера, примерно соответствующего габаритам систем охлаждения современных low-end видеокарт). С появлением Pentium II, Intel заявила, что наступил конец света для сокета, на нем нельзя сделать много дешевого кэша, он не обеспечивает должного охлаждения, и теперь всем миром пора переходить на слоты. AMD пошла следом и после сокетных 486, К5, К6, К6-2, К6-3 стала делать первые слотовые К7 (Athlon). С точки зрения отвода тепла идея была, в общем-то, неплохая, однако в силу ряда причин через пару лет все вернулось к старым добрым сокетам. Выделяемая процессорами мощность неуклонно повышалась, кулеры эволюционировали: росла полезная площадь теплоотводов, увеличивались - диаметр вентилятора, скорость его вращения и, естественно, шум, но ничего принципиально нового так и не появилось.
Сегодня, уже немыслимо представить, что новый процессор может появиться без анонсирования характеристик тепловыделения и энергопотребления. Почему вообще возникают претензии к теплу и почему процессор не может работать при температуре градусов в 200? Физика, конечно же. Начнем с того, что тепло никогда не сказывалось положительным образом на надежности электронных компонентов. Впрочем, пора перейти к более практическим вопросам. Однако, сперва нам придется затронуть некоторые теоретические основы предмета и поговорить об отводе тепла от процессора. Для начала речь пойдет о термопастах и радиаторах.
Рассмотрим разницу между теплом и температурой. Радиатор не снижает температуру чипа! Он просто увеличивает поверхность, соприкасающуюся с воздухом, за счет чего улучшается отвод тепла. Достаточно простая вещь, но, почему-то, не всегда очевидная. Радиатор позволяет сделать так, что тот же процессор для воздушных потоков, грубо говоря, выглядит как пластина площадью не в 100 квадратных миллиметров, а, например, в 1000. Впрочем, на подобные площади в компьютере вам вряд ли кто-то позволит претендовать, так что сегодняшний радиатор для мощных процессоров - это весьма небольшая трехмерная вещица, чей эквивалент в двухмерном виде порой мог бы с легкостью растянуться на всю площадь корпуса вашего PC.
Впрочем, площадь, как ни крути, и как эффективно объем радиатора не используй, все же является ограниченным ресурсом. Когда она заканчивается, в действие вступает следующий шаг защиты - использование теплопроводных свойств различных материалов. В свое время стандартом в этой области являлся алюминий, прекрасно справлявшийся с отводом тепла от относительно холодных чипов вплоть до конца 90-х годов.
Однако, с годами, с чипами происходила одна характерная метаморфоза: их площадь непрерывно сокращалась, а температура так же непрерывно росла. В результате, если раньше мы имели дело с большим чипом под большим радиатором, т.е., источник тепла по отношению к радиатору был примерно равномерно распределен по всей его площади, а скорость потока воздуха была относительно слабой, поскольку речь шла либо о радиаторе самом по себе, либо о простеньком слабеньком вентиляторе. В таких условиях, конечно же, алюминий был неплохим вариантом.
Медь здесь было использовать просто бессмысленно - медный радиатор тут обеспечивал бы примерно те же параметры, будучи втрое тяжелее, а также труднее в обработке и дороже. Однако, когда чипы начали меняться вышеописанным образом, а вентиляторы в кулерах начали становиться все мощнее и мощнее, медь явно стала вырываться вперед. При относительно высоких скоростях потока воздуха, и малой площади чипа, разница в термальном сопротивлении одинаковых радиаторов из меди и алюминия может составлять до 30 с лишним процентов. Хотя, конечно, троекратная разница в весе при этом остается.
Впрочем, существуют и более интересные в этом смысле материалы. Например, разнообразные формы углерода. От природного графита до искусственных алмазов, которые давно уже стали нормой в прецизионных системах охлаждения полупроводниковых лазеров. В PC же можно обойтись и графитом, во всех его формах: при весе меньшем, чем у алюминия, термические свойства у него скорее соответствуют меди.
Это особенно актуально, учитывая текущий тренд развития микроэлектроники - уменьшение размеров чипов на фоне увеличения их мощности и, соответственно, тепловыделения. Так что производителям решений для их охлаждения придется использовать все имеющиеся у них в распоряжении средства. И новые материалы, такие как графит, скорее всего, в обозримом будущем в радиаторах появится, и новые формы, обеспечивающие более эффективное охлаждение.
С самим агентом - воздушной средой, сделать ничего не получится. В плане изменения ее физических свойств, вроде слишком низкой теплопроводности. Так что приходится изменять те вещи, которые все же можно изменить - коэффициент теплопередачи и площадь поверхности, участвующей в обмене тепла.
Коэффициент теплопроводности можно изменить целым набором различных способов, где на первом месте по распространенности стоит увеличение скорости потока воздуха, омывающего радиатор. Правда, больше 10 метров в секунду обычно этот параметр все же поднимать не рискуют - уж слишком громким получается кулер. Тогда в действие вступает второй доступный конструкторам фактор - вариации с формой радиаторов, дабы увеличить эффективную площадь рассеяния, при этом, желательно, учитывать конфигурацию воздушных потоков, чтобы, к примеру, скорость воздуха в результате не снизилась на большую величину, нежели увеличится площадь радиатора.
Здесь, впрочем, тоже есть свои традиционные методы. Например, "ежик", когда на квадратном сантиметре поверхности пытаются разместить максимальное количество пластин-иголок, в результате чего действительно площадь, соприкасающаяся с воздухом, увеличивается максимально, но при недостаточно эффективной конструкции есть шансы значительно снизить скорость продирающегося сквозь них потока воздуха. С каждым годом технологии прессовки все совершенствуются, так что и плотность ребер на ту же площадь непрерывно растет, и форма их непрерывно усложняется - от прямых выступов здесь уже давно перешли к изогнутым плоскостям различных конфигураций (рис.1).
Рисунок 1. Радиатор с изогнутыми ребрами.
Конструктивные требования по теплоотводу, требования по теплоотводу (англ. thermal design power, TDP) — величина, показывающая, на отвод какой тепловой мощности должна быть рассчитана система охлаждения процессора или другого полупроводникового прибора. К примеру, если система охлаждения процессора рассчитана на требования по теплоотводу 30 Вт, она должна обеспечивать отвод 30 Вт тепла при нормальных условиях.
Требования по теплоотводу (TDP) показывают не максимальное теоретическое тепловыделение процессора, а лишь минимальные требования к производительности системы охлаждения в условиях «сложной нагрузки».
Требования по теплоотводу рассчитаны на определенные «нормальные» условия, которые иногда могут быть нарушены, например, в случае поломки вентилятора или неправильного охлаждения самого корпуса. Современные процессоры при этом или дают сигнал выключения компьютера, или переходят в так называемый режим дросселирования тактов (пропуска тактов, англ. throttling), когда процессор пропускает часть циклов.
Разные производители микросхем рассчитывают требования по теплоотводу по-разному, поэтому величина не может напрямую использоваться для сравнения энергопотребления процессоров. Все дело в том, что различные процессоры имеют разную предельную температуру. Если для одних процессоров критической является температура в 100°С, то для других она может быть уже 60°С. Для охлаждения второго потребуется более производительная система охлаждения, потому что чем выше температура радиатора, тем быстрее он рассеивает тепло. Другими словами, при неизменной мощности процессора, при использовании систем охлаждения различной производительности будет различаться лишь получаемая температура кристалла. Никогда нельзя с уверенностью утверждать, что процессор с требованиями по теплоотводу в 100 Вт потребляет больше энергии, чем процессор другого производителя с требованиями в 5 Вт. Нет ничего странного, что требования по теплоотводу часто заявляются для целого семейства микросхем, без учета тактовой частоты их работы, например, для целого семейства процессоров, в котором младшие модели обычно потребляют меньше энергии и рассеивают меньше тепла, чем старшие. В этом случае заявляется максимальная величина требований по теплоотводу, чтобы наиболее горячие модели микросхем гарантированно получили необходимое охлаждение.
По конструкции различают пластинчатые, ребристо-пластинчатые, игольчатые (штырьковые) радиаторы (рис. 3). Для естественной конвекции лучшей является игольчатая конструкция. На рис. 4 показана различная форма ребер радиатора. В отличие от классической формы – а, усовершенствованные формы радиаторов – б и в предназначены для принудительного воздушного охлаждения. Оребренные радиаторы в сотни и даже в тысячи раз увеличивают площадь охлаждаемой поверхности.
рис 3 Конструкции радиаторов
рис 4 Различные формы ребер радиатора: а – классическая, б – двойного оребрения, в – комбинированная
«Экструзионные» (прессованные) радиаторы.
Наиболее дешевые, общепризнанные и самые распространенные на рынке, основной материал, используемый в их производстве —
алюминий.Такие радиаторы изготавливаются методом экструзии (прессования), который позволяет получить достаточно сложный
профиль оребренной поверхности и достичь хороших теплоотводящих свойств.
«Складчатые» радиаторы - Отличаются довольно интересным технологическим исполнением:
на базовой пластине радиатора пайкой (или с помощью адгезионных теплопроводящих паст) закрепляется тонкая металлическая лента, свернутая в гармошку, складки которой играют роль своеобразной оребренной поверхности.
Основные материалы — алюминий и медь.
По сравнению с экструзионными радиаторами, данная технология позволяет получать изделия более компактных размеров, но с такой же тепловой эффективностью (или даже лучшей).
«Кованые» (холоднодеформированные) радиаторы Для их изготовления используется технология холодного прессования, которая позволяет «ваять» поверхность радиатора не только в форме стандартных прямоугольных ребер, но и в виде стрежней произвольного сечения. Основной материал — алюминий, но зачастую в основание (подошву) радиатора дополнительно интегрируют медные пластины (для улучшения его теплоотводящих свойств). Технология холодного прессования характеризуется относительно малой производительностью, поэтому «кованые» радиаторы, как правило, дороже «экструзионных» и «складчатых», но далеко не всегда лучше в плане тепловой эффективности.
«Составные» радиаторы- Во многом повторяют методику «складчатых» радиаторов, но обладают вместе с тем весьма существенным отличием:
здесь оребренная поверхность формируется уже не лентойгармошкой, а раздельными тонкими пластинами, закрепленными на подошве радиатора пайкой или стыковой сваркой. Основной используемый материал — медь. Как правило, «составные» радиаторы характеризуются более высокой тепловой эффективностью, чем «экструзионные» и «складчатые», но это наблюдается только при условии жесткого контроля качества производственных процессов.
Воздух, как мы уже говорили, не является идеалом по теплопроводности, так что для наилучшего охлаждения требуется еще один фактор: чтобы радиатор максимально плотно прилегал к поверхности чипа, и чтобы между ними нигде не возникало даже мельчайших воздушных прослоек. Для этого требуется либо идеальная полировка их поверхностей, либо же какой-то посредник, способный заполнить все впадины и обеспечить, в то же время, пристойную теплопередачу.
Речь, конечно же, идет о разнообразных пастах, гелях, и тому подобных вещах. Сегодняшние материалы подобного рода обладают теплопроводностью до 13 Вт/квадратный метр/градус Цельсия, что более чем достаточно для сегодняшних устройств, но если сбудутся прогнозы на конец этого десятилетия, этот параметр должен будет вырасти раза в три. Но здесь физических проблем тоже не наблюдается - потенциал имеется и выше 100 Вт/квадратный метр/градус Цельсия, а значит, химики и физики в этом направлении наверняка продвинутся.
По мере их работы, несомненно, будет находиться применение все новым и новым материалам. Как это было, например, с материалами с изменяющимся фазовым состоянием, описанными еще двадцать лет назад, но в охлаждении чипов начавших применяться только тогда, когда появились достаточно горячие процессоры, уровня Pentium. Изменяющееся фазовое состояние имеет, например, вода, которая, в зависимости от температуры, может, не меняя своего химического состава, переходить из одного фазового состояние в другое - твердое, жидкое, газообразное.
Воду, конечно, в качестве прослойки между чипом и радиатором не применяют, но есть и другие варианты, представляющие из себя смесь полимерной основы и керамического наполнителя, повышающего термопроводимость смесей - например, Al2O3, BN, AlN или ZnO. Подобные смеси при комнатной температуре представляют из себя весьма вязкую субстанцию, в промежутке 40-70 градусов по Цельсию переходящую в жидкое состояние, вытесняя воздух между чипом и радиатором, и уменьшая термосопротивление этого участка. В таком состоянии материалы с изменяющимся фазовым состоянием работают не хуже гелей и жидких термопаст, но они заметно более удобны в обращении.
Уже отмечалось, что передача тепла от одного тела к другому зависит от площади поверхности соприкосновения.
Соответственно, чем она больше, тем выше эффективность работы охладителя.
К сожалению, ни основание радиатора, ни ядро процессора не имеют идеально гладкой поверхности. Небольшие шероховатости, углубления и царапины
образуют воздушные подушки, а воздух имеет очень малую теплопроводность. Для улучшения теплового контакта применяют различные
тепловые интерфейсы: термопасты и прокладки. Эти интерфейсы имеют высокую теплопроводность и при
контакте заполняют собой неровности поверхности, исключая появление воздушной прослойки.
Контакт радиатора и процессора без теплового интерфейса
Теплопроводящие прокладки обычно изготавливаются из полимерных материалов или из графитового порошка. Последние нередко применялись в охладителях, поставляемых с процессорами Intel. Материал полимерных прокладок может изменять свое состояние — при нагреве он разжижается и заполняет углубления, препятствуя появлению воздушной подушки. Термопрокладки обычно уже нанесены на поверхность основания радиатора. Сейчас полимерные прокладки все
чаще заменяются термопастами. Паста может быть нанесена на поверхность радиатора или поставляться отдельно (как правило, в пакетиках, тюбиках или
шприцах).
Контакт радиатора и процессора с тепловым интерфейсом
Термопасты изготавливаются на основе различных материалов с разной теплопроводностью. На сегодня наиболее известны кремниевая, бескремниевая,
керамическая, алюминиевая, медная, серебряная и золотая термопасты. Название говорит о материале, используемом в термопасте.
Качество теплового интерфейса определяют две характеристики: теплопроводность; средний размер зерна. Очевидно, что, чем меньше этот размер, тем лучше паста будет заполнять все неровности поверхности радиатора. Хорошим тепловым интерфейсом считается паста с зерном 0,38
мкм и теплопроводно стью 8 Вт/м-К.
Контакт радиатора и процессора с мелкой зернистостью
В некоторых исследованиях специалистов в области термопасты утверждается, что у современных кремниевых и металлических термопаст одна общая проблема — большой размер зерна, в результате чего они работают не как теплопроводник, а как теплоизолятор. Исследователи предлагали использовать углеродные пасты, созданные на основе материалов с более низкой теплопроводностью, чем металлы, но с много меньшим размером зерна. Такие утверждения небезосновательны, потому что многие микроскопические царапины на поверхности процессора и радиатора даже при использовании паст остаются заполненными воздухом.
Однако, в реальной практике такие сравнения не проводились.
Из тонкой гибкой графитовой фольги изготавливаются, например, рассеиватели тепла SPREADERSHIELD™, которые применяются в смартфонах, планшетах и экранах.
Гибкая графитовая фольга обеспечивает рассеивание тепла с электронных компонентов благодаря анизотропной теплопроводности — высокой в продольном направлении и низкой в поперечном. Изображение предоставлено GrafTech International
Рассеиватели тепла из графитовой фольги выпускаются с разными характеристиками (толщина, электро- и теплопроводность, контактное сопротивление) и покрытиями,
Распределение температуры в графитовом рассеивателе для двух разных вариантов топологии пленки. Изображение предоставлено GrafTech International
Если плотность теплового потока (тепловой поток, проходящий через единицу поверхности) не превышает 0,5 мВт/см², перегрев поверхности устройства относительно окружающей среды не превысит 0,5 °C (обычно — макс. до 50—60 °C), такая аппаратура считается не теплонагруженной и не требует специальных схем охлаждения. На компоненты с превышением этого параметра, но с относительно низким тепловыделением (чипсеты, транзисторы цепей питания, модули оперативной памяти), как правило, устанавливаются только пассивные радиаторы.
Также, при не очень большой мощности чипа или при ограниченной вычислительной емкости задач, достаточно бывает только радиатора, без вентилятора.
— Intel® I/O Controller Hub 10 (ICH10) Family Thermal and Mechanical Design Guidelines. June 2008. Document Number: 319975-001
Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента на радиатор за счет теплопроводности материала или с помощью тепловых трубок (или их разновидностей, таких, как термосифон и испарительная камера). Радиатор излучает тепло в окружающее пространство тепловым излучением и передает тепло теплопроводностью окружающему воздуху, что вызывает естественную конвекцию окружающего воздуха. Для увеличения излучаемого радиатором тепла применяют чернение поверхности радиатора.
Наиболее распространенный тип систем охлаждения в настоящее время. Отличается высокой универсальностью — радиаторы устанавливаются на большинство компьютерных компонентов с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока.
Поверхности нагревающегося компонента и радиатора после шлифовки имеют шероховатость около 10 мкм, а после полировки — около 5 мкм. Эти шероховатости не позволяют поверхностям плотно соприкасаться, в результате чего образуется тонкий воздушный промежуток с очень низкой теплопроводностью. Для увеличения теплопроводности промежуток заполняют теплопроводными пастами.
Пассивное воздушное охлаждение центрального и графического процессоров требует применения специальных (и довольно больших) радиаторов с высокой эффективностью отвода тепла при низкой скорости проходящего воздушного потока и применяется для построения бесшумного персонального компьютера.
Для увеличения проходящего воздушного потока дополнительно применяют вентиляторы (совокупность его и радиатора именуют кулером). Об этом говорит сайт https://intellect.icu . На центральный и графический процессоры устанавливаются преимущественно кулеры.
Также, на некоторые компьютерные компоненты, в частности, жесткие диски, установить радиатор затруднительно, поэтому они принудительно охлаждаются за счет обдува вентилятором.
Принцип работы — передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода, часто с добавками, имеющими бактерицидный и/или антигальванический эффект; иногда (не рекомендуется) — масло, антифриз, жидкий металл , или другие специальные жидкости.
Система жидкостного охлаждения состоит из:
Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоемкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.
Холодильная установка, испаритель которой установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.
Недостатки:
Системы, совмещающие системы жидкостного охлаждения и фреоновые установки. В таких системах антифриз, циркулирующий в системе жидкостного охлаждения, охлаждается с помощью фреоновой установки в специальном теплообменнике. Данные системы позволяют использовать отрицательные температуры, достижимые с помощью фреоновых установок для охлаждения нескольких компонентов (в обычных фреоновых системах охл. охлаждение нескольких компонентов затруднено). К недостаткам таких систем относится большая их сложность и стоимость, а также необходимость теплоизоляции всей системы жидкостного охлаждения.
Установки, в которых в качестве хладагента (рабочего тела) используется сухой лед, жидкий азот или гелий , испаряющийся в специальной открытой емкости (стакане), установленной непосредственно на охлаждаемом элементе. Используются в основном компьютерными энтузиастами для экстремального разгона аппаратуры («оверклокинга»). Позволяют получать наиболее низкие температуры, но имеют ограниченное время работы (требуют постоянного пополнения стакана хладагентом).
Две и более последовательно включенных фреоновых установок. Для получения более низких температур требуется использовать фреон с более низкой температурой кипения. В однокаскадной холодильной машине в этом случае требуется повышать рабочее давление за счет применения более мощных компрессоров. Альтернативный путь — охлаждение радиатора установки другой фреонкой (то есть их последовательное включение), за счет чего снижается рабочее давление в системе и становится возможным применение обычных компрессоров. Каскадные системы позволяют получать гораздо более низкие температуры, чем однокаскадные и, в отличие от систем открытого испарения, могут работать непрерывно. Однако они являются и наиболее сложными в изготовлении и наладке.
Элемент Пельтье для охлаждения компьютерных компонентов никогда не применяется самостоятельно из-за необходимости охлаждения его горячей поверхности. Как правило, элемент Пельтье устанавливается на охлаждаемый компонент, а другую его поверхность охлаждают с помощью другой активной системы охлаждения. Недостатки: низкий КПД, необходимость защиты от конденсации влаги.
Метод естественного
продолжение следует...
Часть 1 Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы
Часть 2 Оптимизация систем охлаждения - Системы охлаждения электронных устройств и компьютеров
Часть 3 Химия рабочих жидкостей - Системы охлаждения электронных устройств и компьютеров
Надеюсь, эта статья про радиаторы, была вам полезна, счастья и удачи в ваших начинаниях! Надеюсь, что теперь ты понял что такое радиаторы, теплоотводы, охлаждение, системы охлаждения, иммерсионное охлаждение, тепловой интерфейс, электроосмос и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Конструирование и проектирование электронной аппаратуры
Комментарии
Оставить комментарий
Конструирование и проектирование электронной аппаратуры
Термины: Конструирование и проектирование электронной аппаратуры