Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Оптимизация систем охлаждения - Системы охлаждения электронных устройств и компьютеров

Лекция



Это продолжение увлекательной статьи про радиаторы.

...

охлаждения не требует затрат энергии, при его реализации ничто не движется, а, следовательно, не ломается. Это обеспечивает его надежность и простоту. Недостаток – низкая эффективность охлаждения и большие габариты: на 1 Вт мощности требуется поверхность охлаждения 25 – 30 см2 . Наиболее эффективная жидкостная система имеет следующие недостатки: возможность протечек; микронасос и вентилятор требуют потребления энергии; система занимает определенные габариты; все, что движется (вентилятор и насос), снижает надежность и является источником шума. Термоохладители надежны и бесшумны, имеют малые габариты, однако их недостатком является большое потребление энергии, термоохладитель сам является источником выделения тепла, для его работы требуются токи до десятков ампер, тогда как у жидкостных систем ток не превосходит 0,3А. В табл. 2 дается сравнительная характеристика различных систем охлаждения. Наиболее эффективен метод жидкостного охлаждения, в особенности для ППИ силовой электроники с мощностью более 1 МВт.

табл 2 Сравнительная характеристика систем охлаждения

Охлаждение Преимущества Недостатки Применение
Принудительное воздушное Низкая цена, отсутствие утечек

Большой объем, необходимость распределения тепла,

высокое тепловое сопротивление, акустические шумы

Во всех областях электроники
Жидкостное

Малый объем, гибкая конфигурация,

низкое тепловое сопротивление,

малый уровень шумов

Необходим компрессор,

возможность утечек, высокая цена

Лазерные диоды,

силовая электроника,

процессоры видеокарт

Тепловые трубки

Малый объем,

низкое тепловое сопротивление,

малый уровень шумов

Ограниченная теплонесущая способность,

высокая цена,

сложная конструкция

Компьютеры,

силовая электроника,

космос

Термоэлектрическое

Малый объем,

низкое тепловое сопротивление

Ограниченная теплонесущая способность,

низкая эффективость

Оптоэлектроника

Оптимизация систем охлаждения

Воздушный поток

Чем холоднее применяемая охлаждающая среда (воздух), тем эффективнее охлаждение. Более стратегически размещение вентиляторов улучшает воздушный поток внутри корпуса и, таким образом, снижает общую внутреннюю температуру внутри корпуса. Использование более крупных вентиляторов также повышает эффективность и снижает уровень шума. В руководстве AMD по системам охлаждения указывается, что применение переднего вентилятора не так существенно и в некоторых тестах в экстремальных ситуациях этот вентилятор способствует рециркуляции горячего воздуха больше чем привнесению холодного воздуха .

Моделирование воздушных потоков и влияния дизайна радиаторов возможно с использованием методов и программных пакетов CFD. Индивидуальный вентилятор у блока питания имеет преимущество в том, что теплый воздух, производимый блоком питания, не смешивается с воздухом внутри корпуса и напрямую выводится наружу. Моделирование показывает что, температура общего корпуса ниже у любых нижних вентиляционных отверстий, а нагрев происходит в местах с низкой скоростью воздуха из-за его затрудненной циркуляции в местах между корпусом и блоком питания и около отсека для дисководов.

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

1) Отрицательное давление 2) Положительное давление

Положительное давление означает, что вдув в корпус сильнее, чем выдув из корпуса. При такой конфигурация давление внутри корпуса выше, чем в окружающей среде. Отрицательное давление означает, что выдув сильнее, чем вдув. Это приводит к тому, что внутреннее давление воздуха ниже, чем в окружающей среде. Обе конфигурации имеют преимущества и недостатки. Из этих двух конфигураций положительное давление применяется наиболее часто.

Аэрогенные системы

Воздушное охлаждение, при всех его недостатках, обладает главным преимуществом - простотой и дешевизной реализации. Определенные же доработки позволяют по-новому взглянуть на дальнейшие перспективы воздушного охлаждения применительно к охлаждению все более мощных процессоров.

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 2. Revoltec Freeze Tower ().

Есть куда стремиться и создателям моторов, и дизайнерам лопастей. И в плане повышения эффективности основной функции и в плане снижения шума. В области традиционных кулеров вообще есть еще к чему стремиться. Тут и сочетания различных материалов в одном радиаторе, когда, допустим, основа делается из одного материала, а ребра - из другого, и вентиляторы с повышенной в разы мощностью, и пьезоэлектрические ребра охлаждения (рис.2).

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 3. Scythe KATANA Cu

В настоящее время в этой области многое изменилось - добрая половина моделей переместилась в разряд неактуальных, на рынке появились системы охлаждения с оригинальными конструкциями и улучшенными характеристиками.

Энергопотребление и, как следствие, тепловыделение представителей многочисленного семейства c архитектурой Intel Core оказалось гораздо ниже самых оптимистичных прогнозов. Почти все современные процессоры AMD изначально отличались умеренным энергопотреблением, а теперь пользователям предлагаются еще и более экономичные модели Energy Efficient. Поэтому производители кулеров сегодня много внимания уделяют не только эффективности своих решений, но и улучшению внешнего вида и шумовых характеристик систем охлаждения, а также обеспечению максимальной совместимости продуктов с различными процессорными разъемами. Некоторые компании даже возвращаются к проверенным конструктивным решениям, лишь слегка их модернизировав (рис.3). С выходом Core 2 Duo требования к эффективности охлаждения во время их работы в штатном режиме значительно снизились. Однако для раскрытия частотного потенциала понадобится улучшенный отвод тепла, да и появление четырехъядерных процессоров возобновляет интерес к альтернативным системам охлаждения.

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводыСистемы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 4. Zalman CNPS8000

Сегодня при производстве большинства систем охлаждения в конструкции массово используются тепловые трубки, которые позволяют снизить общую массу радиатора при сохранении его высокой эффективности, улучшить теплопередачу от основания радиатора к ребрам, применять относительно дешевый алюминий вместо меди (рис.4,5).

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 5. Thermaltake Beetle

Аэрогенные системы с элементами Пельтье

Есть и еще один любопытнейший интерфейс между чипом и радиатором, основанный на открытом еще в первой половине 19-го века эффекте, по имени его первооткрывателя получившего название эффекта Пельтье. Эффект заключается в том, что напряжение, поданное на два противоположных друг другу материала вызывает разницу температур. Перетекая в один, электроны переходят в более высокое энергетическое состояние, поглощая тепло, возвращаясь в другой, они это тепло высвобождают. Типичный термоэлектрический модуль, таким образом, состоит из двух хорошо пропускающих тепло керамических пластинок, являющихся его оболочкой, и расположенных между ними пар из прилегающих друг ко другу P и N легированных материалов полупроводника теллурида висмута (Рис.6).

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 6. Элемент Пельтье.

При подаче напряжения одна из сторон охлаждается, другая - нагревается. Это ни в коем случае не средство охлаждения, как зачастую относятся к элементам Пельтье не разбирающиеся в теме люди. Это тепловой насос, который не превращает тепло в холод, а просто, фактически, эффективно передает его с одного своего конца на другой. Объем совершаемой работы, естественно, полностью зависит от напряжения и силы тока и в существующих сегодня на рынке моделях, разница между холодной и горячей сторонами элемента может составлять весьма внушительную величину. До 65-70 градусов в случае использования одной пары термоэлектриков, и еще больше - если такие пары в одном элементе накладываются друг на друга (рис.7).

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 7. Кулер с термоэлектрическим модулем Пельтье - Thermaltake SubZero4

Да, мы спокойно можем сделать температуру стороны, прилегающей к процессору, скажем, 0 градусов по Цельсию. Весь вопрос в том, каких затрат энергии нам это будет стоить, и какова будет температура горячей стороны, которую придется охлаждать привычными методами. Элемент Пельтье способен несколько облегчить жизнь чипу, поскольку, будучи малой площади, способен отвести непосредственно от чипа куда больше тепла, чем любой радиатор куда более крупных размеров, но количество тепла в системе чип-радиатор он снизить не может по определению. Это всего лишь тепловой насос.

Гидрогенные системы

Так что дальше с отводом тепла придется сражаться либо все тому же классическому кулеру, либо же чему-нибудь несколько более мощному. Мощному - читай, имеющему лучшую теплопроводность, чем воздух. Да, речь идет о жидкостном охлаждении во всех его проявлениях. За счет своей более высокой теплопроводности жидкость лучше поглощает тепло от его источников, а принудительное ее охлаждение в отведенном для этого месте может не ограничиваться доведением ее до комнатной температуры, тогда как в случае с воздухом нам приходится пользоваться тем, что дают.

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 8. Система с жидкостным охлаждением.

Классическая схема в этом случае выглядит следующим образом: с чипом соприкасается полая металлическая пластина, через которую протекает охлаждающая жидкость. Поглотив тепло от стенок пластины, нагретых чипом, она попадает в специальный резервуар. Из него, с помощью насоса, нагретая жидкость перемещается в теплообменник, где у нее производится отъем тепла помощью воздуха. Вновь охлажденная жидкость попадает все в ту же пластину, соприкасающуюся с чипом (рис.8,9).

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводыСистемы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 9. Система водяного охлаждения Thermaltake Aquarius II.

Криогенные системы

Эти системы отличаются от гидрогенных только тем, что в качестве теплоносителя вместо воды используется термальный агент - фреон. Соответственно, контур полностью и обязательно герметичен, а насос и теплообменник отличаются улучшенным качеством (рис.10).

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 10. Система испарительного охлаждения Asetek Vapochill

В итоге получается своего рода минихолодильник на процессоре. При стандартном тепловыделении 70 Вт температура может поддерживаться в районе 5°C. Эффективность выше, но и стоимость - как минимум, несколько сотен долларов.

Циклические тепловые трубки

Тем не менее, никто не запрещает использовать в теплообменнике более комплексные технологии охлаждения - это исключительно вопрос стоимости системы. Например, можно рассмотреть такой вариант, как пульсирующие тепловые трубки, они же - циклические.

Берем тонкую трубку, и изгибаем ее так, чтобы она создавала множество U-образных переходов. Трубка заполнена жидкостью не полностью, а так, что остается свободное место. В результате того, что одной стороной вся эта система примыкает к источнику тепла, а другую ее сторону охлаждает воздушный поток, внутри начинаются испарения и осаждения жидкости, с образованием пузырьков пара и превращением их обратно в жидкость по мере постоянного пульсирующего изменения давления в системе. Эти процессы и являются единственной движущей силой внутри системы, перемещающей жидкость от теплого ее конца к холодному, и обратно! То есть, ряд лишних в данном случае вещей, вроде гидравлического насоса, мы просто-напросто вычеркиваем (рис.11).

Эта технология пока что еще изучена довольно слабо для доведения ее до массового использования, но перспективы, судя по первым опытам, у нее самые что ни на есть оптимистические. Вот такая вот ажурная "коронка", установленная на основе 80х80х2 мм, способна пропускать через себя до 450 Вт тепла при разнице температур на разных своих сторонах до 40 градусов, будучи обдуваемой потоком воздуха со скоростью всего в 3 м/с.

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 11. Циклические тепловые трубки.

Можно вспомнить и о других интересных и, возможно, перспективных методах отвода тепла. Например, чем-то похож на только что описанный процесс метод переноса жидкостью тепла внутри пластины радиатора, когда в ней используется капиллярная структура, по которой жидкость переносит тепло от нагретого конца пластины к холодному, возвращаясь затем обратно. В результате снижается термосопротивление пластины по сравнению с тем, если бы она была сделана из чистого металла, в результате чего улучшается перенос тепла с одной стороны на другую. Это позволяет некоторым производителям видеокарт делать решения с подобными радиаторами, не нуждающиеся в принудительном охлаждении потоком воздуха.

Более того, появляются предложения использовать этот подход более, если можно так выразиться, интегрировано. То есть, делать чипы, в которых капиллярная структура будет использоваться не в радиаторе, а в теле самого чипа. Понятно, что в идее есть свое здравое ядро - тепло отводится непосредственно от тепловых очагов, про термосопротивление интерфейса вообще можно забыть за фактическим отсутствием оного. Хотя понятно, что всерьез говорить о каких либо возможностях использования этого предложения в современных процессорах, где на счету каждый квадратный миллиметр, просто бессмысленно. Здесь даже криогенное охлаждение получится дешевле, если учитывать, сколько сегодня стоит мельчайшая частица площади чипа. Это лишний раз подчеркивает, что, когда мы говорим об охлаждении процессоров, стоимость решений важна как бы ни больше, чем их эффективность. На то он и массовый рынок.

Электроосмос

Или, к примеру, еще один похожий вариант. Но здесь к термодинамике добавляются еще и электрические силы. Есть такой эффект - электроосмос, когда внешнее электрическое поле перемещает ионы в жидкости, заставляя весь ее объем перемещаться в том же направлении. В результате у нас появляется возможность создания миниатюрного гидравлического насоса, не имеющего движущихся частей - вполне идеальный вариант для применения в PC классических систем с водным охлаждением. Ученые из Стэнфорда исследовали подобные системы в сочетании с радиаторами с внутренней капиллярной структурой, и достигли весьма обнадеживающих результатов, вполне позволяющих рекомендовать подобные комбинации, например, для использования в мощных ноутбуках (рис.12).

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 12. Система электроосмос в сочетании с радиаторами с внутренней капиллярной структурой.

Влияние низких температур на работу электронных схем

По мере того, как чипы становятся все более мощными и миниатюрными, сегодняшние массовые решения, основанные на охлаждении металлических радиаторов воздушным потоком, начнут все дальше и дальше отступать в прошлое, уступая свое место вышеописанным решениям или даже их комбинациям. Благо, что за те годы, что используются нынешний подход, технологии совершили заметный скачок, так что уже видна возможность их выхода на коммерческий рынок. Последние модели графических High-End карт, в комплекте с которыми опционально можно приобрести систему водяного охлаждения и наличие на рынке большого ассортимента систем для водяного охлаждения центрального процессора лишний раз это доказывают.

Впрочем, бывают случаи, когда даже такого уровня охлаждения оказывается недостаточно. Впрочем, здесь затрагиваются несколько более фундаментальные вопросы. Например, о направлении развития всей микроэлектроники, как таковой. Сегодня мощность чипов наращивается всем известным образом - за счет уменьшения размеров транзисторов, увеличения их количества, и отношения напряжение/размер транзистора.

Между тем, еще несколько десятков лет тому назад проводились серьезные исследования на тему влияния низких температур на работу электронных схем. Комбинация получилась идеальная: производительность работы увеличивалась, за счет уменьшения времени переключения транзистора и сопротивления межтранзисторных соединений, одновременно повышалась надежность за счет увеличения времени жизни и уменьшения количества отказов. Таким образом, есть и альтернативный вариант для увеличения производительности чипов - достаточно охладить их до весьма низких температур. Чем, кстати, и пользуются их производители, когда им надо показать потенциал своего детища - достаточно применить жидкий азот.

Нитрогенные системы

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы

Рисунок 13. Система охлаждения на жидком азоте

Самый "хардкорный", самый недоступный, самый неудобный и самый эффективный на сегодня подход - "нитрогенное охлаждение". В емкость, закрепленную на кристалле, наливается сжиженный газ - азот, имеющий температуру далеко ниже нуля по Цельсию (рис.13). Здесь вопрос эффективного подвода холодного теплоносителя не стоит, потому что он либо есть (и имеет свои - 196°C), либо его нет. Теплообмен также не является проблемой по той же причине - емкость на кристалле имеет фактически ту же температуру - 196°C, пока там есть жидкий азот.

И отвод горячего теплоносителя тоже не является проблемой, поскольку все происходит само собой - азот быстро и с шумом испаряется. Но в этом подходе при массе его достоинств остается одна непроходимая проблема - собственно сам жидкий азот, который нужно будет покупать в огромных количествах и регулярно доливать в ту ужасную, покрытую инеем и туманом конструкцию, бывшую когда-то вашим персональным компьютером.

Как показывают результаты опытов, в среднем, в зависимости от характеристик чипа, можно говорить где-то о приросте 1-3 процентов производительности CMOS транзисторов на снижение температуры на каждые 10 градусов Цельсия. Это очень не мало - снизив температуру чипа, к примеру, с 60 градусов выше нуля до 40 градусов ниже нуля, как это вполне успешно делает сегодня Kryotech, мы получим суммарное снижение в 100 градусов, а это - уже плюс 10-30 процентов к производительности, что на сегодняшний день для центральных процессоров дает прирост в сотни мегагерц.

Впрочем, так уж сложилось на сегодняшний день, что ускорение чипов традиционными методами считается более дешевым и простым вариантом. Поэтому производители предпочитают вкладывать миллиарды долларов в совершенствование техпроцессов, а более-менее заметными примерами использования криогенных методов охлаждения с использованием компрессоров (схема, наподобие которой работают кондиционер и холодильник), являются разве что та же Kryotech со своими системами на базе Athlon, да IBM, с некоторыми из своих серверов.

Хотя, стоит чуть более подробнее коснуться этого метода, тем более, что он используется в коммерческих PC. Метод является, пожалуй, самым "тяжелым", поскольку потенциально способен давать охлаждение хоть до температур сжижения газов, т.е., намного ниже - 200 по Цельсию. Он основан на использовании легкоиспаряющихся жидкостей и на том, что газы (в данном случае, эта самая испарившаяся жидкость), при расширении охлаждаются, предварительно же эти самые пары сжимают при использовании компрессора. В конденсаторе, расширяясь, они отдают тепло (как от чипа, так и то, что было получено при сжатии), конденсируясь обратно во влагу, которая вновь идет в прилегающую к чипу пластину для того, чтобы в очередной раз испариться.

Тем не менее, как уже говорилось, несмотря на всю потенциальную (да и демонстрируемую) мощность такого подхода, применяется он не так уж и часто. В чем-то такая позиция обоснована, поскольку, все же, вода и чипы - понятия не совместимые, так что любое использование жидкостных систем охлаждения для производителей PC является достаточно хлопотным занятием. Необходимо тщательнейшим образом отслеживать все вопросы, связанные с герметичностью, появлением конденсата, и т.д. Добавим сюда довольно большой занимаемый объем в корпусе PC и достаточно высокую стоимость, и мы поймем, почему этот метод охлаждения так и не получил до сих пор массового признания. Впрочем, подождем еще несколько лет, пока температура чипов поднимется до той точки, когда потребуются новые методы охлаждения.

Применение "открытой жидкости".

Возможно, что тогда эти соображения особой роли играть не будут, более того, в ход пойдут и еще более экстремальные технологии, основанные уже на применении "открытой жидкости", не загнанной в различные резервуары, а имеющей прямой контакт с чипом.

Первый из подобных методов, он же - наиболее поражающий своей эффектностью, это полное погружение внутренностей компьютера в охлаждающий раствор. При этом мы вообще полностью избавляемся от термосопротивления прилегающей к чипу пластины, в которой содержится вода, и всех прочих подобных термоинтерфейсов. Прямой контакт - тепло сразу передается в охлаждающую среду.

Вроде бы, только что говорилось о полной несовместимости чипов и воды? Да. Но здесь вся хитрость в том, что речь идет в том, что имеются уникальные составы, имеющие жидкое агрегатное состояние, но являющиеся при этом полноценными диэлектриками. Так что чип может спокойно работать, будучи погруженным в такой раствор - отсутствие коротких замыканий гарантировано так же, как если бы между контактами находился бы воздух. На сегодняшний день общепринятым вариантом в этом случае является целый класс флюорокарбоновых жидкостей, из которых наиболее известна предлагаемая 3M марка "Fluorinet", также представляющая из себя целый набор продуктов с различными свойствами. Термосвойства у нее хуже, чем у воды, но, за счет того, что возможен прямой контакт с чипом...

С подобными системами активно работала IBM, использовались флюоркарбоновые составы и в охлаждении CRAY-2. Естественно, что речь не идет просто об отводе тепла в жидкость, иначе, при температурах нынешних чипов, модуль с ней быстро превратился бы в кипящий котел. Как и в системах с непрямым жидкостным охлаждением, здесь также присутствует охлаждающий блок, где состав может отдавать поглощенное им от чипов тепло.

Есть и еще один, не менее любопытный метод использования жидкостей в открытом виде. Здесь используется тот широко известный факт, что при испарении температура жидкостей понижается. Дальнейшее, грубо говоря, понятно - радиатор чипа в таком случае представляет из себя миниатюрный бассейн, откуда идет испарение жидкости. За счет этого дно бассейна, прилегающее к чипу, охлаждается, а пар каким-нибудь образом собирается, и конденсируется обратно в ту же жидкость. В общем, чем-то все напоминает вышеописанный криогенный метод. Способ весьма экзотический, в коммерческих решениях на сегодняшний день не применяется.

Иммерсионное охлаждение электроники

Для сокращения затрат на охлаждение серверов и снижения вредного воздействия выбросов в окружающую среду компания 3М разработала революционный метод охлаждения для дата-центров — технические жидкости для иммерсионного охлаждения в однофазных и двухфазных системах. Внедрение такого метода позволяет сократить энергозатраты на 97% (!) при уменьшении площадей серверных помещений на порядок и поддержке оптимальной рабочей температуры процессоров.

Иммерсионное охлаждение осуществляет теплоотвод методом непосредственного погружения печатных плат в непроводящую
диэлектрическую жидкость. Тепло, выделяемое комплектующими, напрямую и эффективно передается жидкости, устраняя необходимость в активных компонентах охлаждения, таких как термоинтерфейсы, радиаторы и вентиляторы. Данная организация теплоотвода повышает эффективность расходуемых энергоресурсов и уплотняет размещение серверов в стойках. А «собранное» тепло можно использовать для последующих инноваций.
В США энергоэффективность государственных дата-центров регулируется указом президента от 2015 года, согласно которому PUE всех
дата-центров должна составлять менее 1,5, а к 2025-му новые датацентры должны достичь уровня 1,2–1,4.
В 2014 году компания 3М получила бронзовую медаль Эдисона (награда, вручаемая институтом инженеров электротехники и электроники IEEE) за технологию двухфазного охлаждения посредством жидкостей Novec.

Основные типы иммерсионного охлаждения

Основными методами охлаждения электроники являются воздушное (преимущественно) и жидкостное. Сегодня большинство ЦОДов построено на воздушном или воздушно-водяном охлаждении. Сравнение с воздушным методом охлаждения приведено на рис. 1 и в таблице 1. Сегодня для жидкостного охлаждения применяются различные вещества: вода, деионизированная вода, ингибированные гликоли (этиленгликоль и пропиленгликоль), диэлектрические жидкости. Принципиальное значение при выборе типа жидкости имеет вопрос ее совместимости со смачиваемыми материалами, что позволит избежать коррозии при долгосрочном использовании (табл. 2).
Вода является отличным решением для охлаждения, она имеет хорошую теплопроводность и совместима с медью. Для ее использования в системе охлаждения необходимо озаботится дополнительными фильтрами или деионизаторами воды, поскольку примеси в водопроводной воде очень быстро приведут к образованию коррозии.
Для защиты от коррозии в воду добавляют фосфаты — эффективную антикоррозионную добавку для нержавеющей стали и большинства алюминиевых компонентов, а также обеспечивают pH контроль.
Их единственный недостаток — выпадение осадка вместе с кальцием. Этиленгликоли широко распространены в автомобильной промышленности (антифриз), однако их нельзя использовать для охлаждения электроники, поскольку они содержат ингибиторы с силикатами, которые разрушают герметизирующие прокладки и способствуют гелеформированию.
Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы
Рис. 1. Преимущества двухфазного охлаждения перед воздушным
Таблица 1. Сравнение воздушного и жидкостного охлаждения (данные ГК РСК)
Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы
Таблица 2. Совместимость материалов с различными охлаждающими жидкостями
Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы
Сегодня этот тип охлаждения предназначен для оборудования пищевой промышленности.
По сравнению с водопроводной водой деионизированная вода служит хорошим изолятором, но отличается высокой резистивностью и коррозийностью, поэтому в нее добавляют антикоррозионные составляющие.
Кроме того, трубки должны быть выполнены из сверхчистого материала, а любая арматура — иметь покрытие никелем.
Технические жидкости Novec обладают преимуществами перед другими диэлектрическими жидкостями, например минеральным маслом. Помимо того что жидкости 3М являются невоспламеняющимися и невзрывоопасными, они имеют необходимую точку кипения и термостабильность для построения двухфазной
системы охлаждения. Обслуживание и ремонт оборудования не вызовет проблем — ведь погруженные в жидкость платы остаются чистыми и сухими (именно сухими, несмотря на то, что они погружены якобы в «жидкость»).
Кроме того, масло вызывает множество проблем с очисткой как охлаждаемой аппаратуры, так и помещений, где оно расположено (в случае протечки).
Диэлектрические жидкости 3М совместимы с любыми материалами (табл. 3), в то время как масло плохо сочетается с пластиковыми кабелями и может оставлять осадок на компонентах. Также масло долго сохраняет тепло, что затрудняет быстрое и своевременное обслуживание оборудования.
В 1950-е годы компания 3М выпустила первую фторсодержающую охлаждающую жидкость для военной авионики (Fluorinert).
А 1970–1980-е стали эрой расцвета материалов для прямого контактного охлаждения, благодаря чему появилась возможность развивать радарную технику, силовую электронику и суперкомпьютеры.
В 1996 году специалисты 3М создали новый тип жидкости для замены озоноразрушающих веществ (таких как CFC, HFC) — жидкости под торговой маркой Novec.

Жидкости Fluorinert

Жидкости Fluorinert относятся к классу полностью фторированных жидкостей, известных как перфторуглероды (PFC). Прозрачные, без цвета и запаха, невоспламеняемые жидкости имеют ряд особенностей, делающих их привлекательными для иммерсионного охлаждения печатных плат, и характеризуются отличными диэлектрическими свойствами, широким диапазоном точек кипения и хорошей совместимостью с различными материалами. На протяжении более 50 лет эти жидкости используются для решения сверхсложных и ответственных задач теплоотвода, например, в пассажирских экспрессах в Японии и в экспериментальном космическом модуле Kibo (Hope) на МКС. Также они широко распространены как практический материал для прямого охлаждения силовых конвертеров и в испытательных лабораториях. Несмотря на то что жидкости Fluorinert не разрушают озоновый слой, они имеют долгий срок жизни в атмосфере и высокий потенциал глобального потепления. По этой причине, как и все перфторуглероды, они должны применяться только в тех приложениях, где необходимы их уникальные свойства, причем особое внимание надо уделить контролю выбросов и их минимизации. Жидкости Fluorinert (табл. 4) следует использовать только в закрытых резервуарах и системах, особые меры безопасности требуются для предотвращения попадания в глаза и на кожу. И хотя данная жидкость
инертна, практика ее применения в суперкомпьютерах Cray-2 показала, что в течение продолжительного срока эксплуатации она
расщепляется и выделяет высокотоксичный перфторизобутан, для удаления которого понадобятся катализаторные очистители.
Практика употребления перфторуглеродных жидкостей была показана в

продолжение следует...

Продолжение:


Часть 1 Системы охлаждения электронных устройств и компьютеров радиаторы и теплоотводы
Часть 2 Оптимизация систем охлаждения - Системы охлаждения электронных устройств и компьютеров
Часть 3 Химия рабочих жидкостей - Системы охлаждения электронных устройств и компьютеров

См.также

Надеюсь, эта статья про радиаторы, была вам полезна, счастья и удачи в ваших начинаниях! Надеюсь, что теперь ты понял что такое радиаторы, теплоотводы, охлаждение, системы охлаждения, иммерсионное охлаждение, тепловой интерфейс, электроосмос и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Конструирование и проектирование электронной аппаратуры

Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.

создано: 2015-05-17
обновлено: 2024-11-14
680



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Конструирование и проектирование электронной аппаратуры

Термины: Конструирование и проектирование электронной аппаратуры