Лекция
Сразу хочу сказать, что здесь никакой воды про микроминиатюризация, и только нужная информация. Для того чтобы лучше понимать что такое микроминиатюризация, масса и габариты рэс , настоятельно рекомендую прочитать все из категории Конструирование и проектирование электронной аппаратуры.
Микроминиатюриза́ция — направление научно-технической деятельности, основными задачами которого являются уменьшение габаритов, массы и стоимости радиоэлектронной аппаратуры при одновременном повышении ее надежности и экономичности за счет совершенствования схемотехнических, конструкторских и технологических методов. Тенденция микроминиатюризации представляет собой непрерывный процесс, который опирается главным образом на достижения микроэлектроники, в том числе на использование интегральной технологии. микроминиатюризация позволяет снизить энергопотребление, повысить быстродействие, упростить конструкцию и расширить функциональные возможности как отдельных электронных приборов, так и сконструированных на их основе устройств[
Под надежностью электронной аппаратуры в широком смысле понимается ее способность безотказно выполнять заданные функции в течение требуемого промежутка времени. Основной причиной отказов является выход из строя отдельных элементов, поэтому средняя частота отказов электронного устройства в целом определяется надежностью всех входящих в него элементов. Надежность электронной аппаратуры, в частности, может быть повышена за счет автоматизации производства и применения микроминиатюрных электрорадиоэлементов, таких как интегральные схемы и приборы функциональной электроники. Эти меры позволяют значительно сократить число паяных соединений, которые в определенных случаях являются причиной отказов. Кроме того, применение функциональных приборов практически полностью исключает отказы, обусловленные различными коэффициентами линейного расширения составных частей конструкции, так как они часто выполняются на базе однородного материала. Благодаря уменьшению габаритов электронной аппаратуры также появляется возможность выполнять сплошную герметизацию, что усиливает защиту от воздействия окружающей среды и повышает механическую прочность конструкции.
Одним из основных показателей, характеризующих степень миниатюризации электронной аппаратуры, является плотность упаковки, показывающая число элементов электрической схемы или цепи (электрических сопротивлений, емкостей, индуктивностей и др.), заключенных в единице объема электронного устройства. Плотность упаковки в значительной степени зависит от используемой элементной базы, рациональности компоновки, конструктивных потерь из-за монтажа, несущих конструкций, теплоотводящих и прочих элементов защиты. Так, например, плотность упаковки электронной аппаратуры на основе электронных ламп достигает 0,3 эл/см3, на основе модульных конструкций и дискретных полупроводниковых элементов — 2,5 эл/см3, а на основе микромодулей — свыше 10 эл/см3. Еще большей степени миниатюризации можно добиться за счет использования изделий интегральной электроники, при этом плотность возрастает вплоть до нескольких тысяч элементов в 1 см3. Стоит отметить, что данный показатель может быть использован для оценки не только конечных электронных устройств, но отдельных интегральных схем. В этом случае плотность упаковки показывает число элементов (чаще всего транзисторов), приходящихся на единицу площади полупроводникового кристалла.
Микромодульный метод конструирования радиоэлектронной аппаратуры широко применялся во второй половине 1950-х и в течение 1960-х годов. Микромодули представляют собой миниатюрные функционально законченные узлы, которые не подлежат ремонту и в случае неисправности заменяются целиком. В соответствии со своей электрической схемой каждый микромодуль выполняет определенную функцию — усилителя, генератора, триггера и т. п. Микромодули собираются из отдельных деталей (микроэлементов), объединенных в общую конструкцию стандартной формы и размеров, обеспечивающую их герметизацию и защиту от внешних воздействий. Промышленностью выпускались плоские, этажерочные, цилиндрические, таблеточные и другие виды микромодулей. Наиболее широкое распространение в свое время получили этажерочные и плоские микромодули .
Плоские микромодули представляют собой односторонние или двусторонние печатные платы с миниатюрными элементами, смонтированными методом пайки или приклейки электропроводящим клеем, защищенные от внешних воздействий металлическим колпачком и эпоксидным компаундом. Об этом говорит сайт https://intellect.icu . Плоские микромодули имеют фиксированную ширину, а длина и высота их могут варьироваться в зависимости от числа и конструктивных особенностей входящих в них элементов .
Этажерочный микромодуль отличается от плоского тем, что для размещения микроэлементов используется конструкция типа «этажерки», в которой горизонтальными полками являются микроплаты, а вертикальными — соединительные проводники (перемычки). Схемные элементы этажерочного микромодуля могут быть печатными или навесными. Обычно на микроплату устанавливают с одной стороны один элемент, оставляя вторую сторону свободной. После сборки и пайки микромодуль также герметизируют компаундом[10][11].
Когда через электронный прибор (например, транзистор) протекает электрический ток, происходит выделение тепловой энергии. Если это тепло не отводится в окружающую среду, то температура прибора начинает возрастать. В результате уменьшения габаритов элементной базы, обусловленного процессом микроминиатюризации, сокращается площадь поверхности, через которую теплота может быть отведена от электронного прибора. Кроме того, увеличивается плотность компоновки аппаратуры, то есть возрастает количество элементов, размещенных в единице объема устройства. Так как тепловыделение элементов при этом останется практически неизменным, это приводит сначала к ухудшению естественного конвекционного и лучистого охлаждения, а затем — к превышению допустимой рабочей температуры и, соответственно, выходу устройства из строя. Таким образом, дальнейшая миниатюризация становится невозможной без введения дополнительных мер по обеспечению требуемого температурного режима. Решается проблема отвода тепла путем снижения мощностей рассеивания, введения дополнительных средств отвода тепла (радиаторов, тепловых трубок, элементов Пельтье и др.), заключения отдельных частей в пластик для отвода тепла посредством теплопроводности, а также разработки новых элементов и материалов, способных функционировать под воздействием более высоких температур[12][13].
Снижение массы РЭС (радиоэлектронных средств) имеет большое значение для расширения возможностей удовлетворения информационных потребностей общества. Во многих случаях масса (габариты) РЭС имеет определяющее значение для возможностей его применения. Особенно критичны требования к массе РЭС при их использовании на самолетах, ракетах, ИСЗ.
Если масса бортовой РЭС превышает определенный уровень, то теряется смысл их установки, так как недопустимо снижается масса полезной нагрузки (пассажиры, научная аппаратура), ради которых создается самолет, ракета, ИСЗ. Конечно, можно повышать мощность носителя, его грузоподъемность и т. п. Но при этом приходится в значительно большей мере увеличить их массу по сравнению с РЭС.
В табл. 3.2 дано изменение для разных носителей, где — увеличение массы объекта установки (носителя), необходимое для сохранения его параметров при установке РЭС; — масса РЭС; — коэффициент увеличения массы.
Очевидна целесообразность уменьшения массы РЭС, тем более, что часто микроминиатюризация приводит к повышению технологичности и снижению стоимости. Однако иногда снижение Орэс приводит к возрастанию их стоимости, например при использовании заказных БИС, золоченых контактов, микроминиатюрных ЭРЭ, в которых применены дорогие материалы, а также при уменьшении выхода годных. Нужно иметь в виду, что для бортовых РЭС обычно оправдано уменьшение массы РЭС даже при увеличении затрат. Рассмотрим оптимизацию совокупности затрат на РЭС и носитель в связи с увеличением его массы и стоимости при установке РЭС. Приращение затрат на носитель при установке РЭС:
(3.3)
где — коэффициент пропорциональности, показывающий затраты на один килограмм носителя.
Затраты на РЭС получим, полагая, что они увеличиваются при уменьшении массы. Положим, что справедлива обратная пропорциональность. Тогда
(3.4)
где — коэффициент, отражающий увеличение затрат на РЭС при их усложнении; a — показатель степени, отражающий скорость изменения затрат на РЭС при изменении . Тогда общие затраты равны:
Продифференцировав по QРЭС и приравняв производную нулю, найдем массу РЭС, дающую минимум затрат на носитель и РЭС при установке РЭС:
(3.5)
Предположим, что комплекс РЭС самолета имеет при первоначальной конструкции массу 300 кг и затраты составляют 105 руб. Тогда при a=1 aрэс=3 107 рубкг. Оптимальная масса РЭС в предположении справедливости (4) при аоу=100руб/кг, КQ==15 составит
Следовательно, для уменьшения суммарных затрат целесообразно переработать конструкцию РЭС, допустив увеличение затрат на изготовление примерно в два раза (например, за счет повышения степени интеграции и использования заказных БИС; введения многослойного печатного монтажа с минимальными толщиной слоев, шириной проводников и расстояниями между ними; применения наиболее компактных соединителей и т. п.).
Микроминиатюризация процессоров Intel
Физические ограничения микроминиатюризации
Минимальную длину канала ограничивает эффект, связанный со смыканием областей истока и стока при приложении напряжения к стоку VDS . Поскольку ширина lоб p -n -перехода, смещенного в обратном направлении, равна
то минимальная длина канала
1) больше удвоенной ширины p-n-перехода Lmin >2 lоб
2) прямо пропорциональна корню квадратному от напряжения питания
3) обратно пропорциональна корню квадратному от уровня легирования подложки.
При толщине окисла dox =100 A и концентрации акцепторов NA = 1017 см–3 возможно создание МОП-транзистора с длиной канала L =0,4 мкм при напряжении питания 1 — 2 В. Дальнейшее увеличение легирующей концентрации в подложке может привести к туннельному пробою p + -n + -перехода.
Подзатворным диэлектриком является диоксид кремния, уменьшение толщины которого приводит к увеличению электрического поля (поперечного, что создает инверсионный слой в канале) через оксид.
По мнению представителей корпорации Intel, существует теоретическая возможность создать работающий транзистор с толщиной подзавторного диэлектрика, равной размерам одного атома.
Наращивание областей истока и стока позволяет предотвратить деградацию характеристик полевого транзистора и уменьшает вероятность пробоя подзатворного диэлектрика.
Создание дополнительного слоя SiO2 сокращает паразитные емкости, а следовательно, позволяет добиться более высокой скорости переключения транзистора.
Применение SiGe канала увеличивает скоростные характеристики транзистора за счет более высокой подвижности дырок. Однако преимущество уменьшается при сокращении длины канала.
Транзисторы, созданные в лабораториях Intel
Размеры современного МОП транзистора сравнимы с размерами молекулы ДНК
Статью про микроминиатюризация я написал специально для тебя. Если ты хотел бы внести свой вклад в развитие теории и практики, ты можешь написать коммент или статью отправив на мою почту в разделе контакты. Этим ты поможешь другим читателям, ведь ты хочешь это сделать? Надеюсь, что теперь ты понял что такое микроминиатюризация, масса и габариты рэс и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Конструирование и проектирование электронной аппаратуры
Комментарии
Оставить комментарий
Конструирование и проектирование электронной аппаратуры
Термины: Конструирование и проектирование электронной аппаратуры