Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

55. Чертеж Точки и линии на поверхности кратко

Лекция



Привет, мой друг, тебе интересно узнать все про точка на поверхности, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое точка на поверхности, линия на поверхности , настоятельно рекомендую прочитать все из категории Начертательная геометрия и инженерная графика.

В общем случае линия может принадлежать поверхности или не принадлежать. Линия принадлежит поверхности, если все ее точки принадлежат этой поверхности (см. рис. 103, линия l). Исключение составляет случай, когда линия представлена прямой, а поверхность — плоскостью. В этом случае для принадлежности прямой плоскости достаточно, чтобы хотя бы две точки ее принадлежали этой поверхности (см. § 49). Задачи построения линий, принадлежащих поверхности, входят составной частью в задачи построения линий пересечения поверхностей плоскостью и пересечения двух поверхностей, которые рассматриваются в §§ 63, 64.

Если линия не принадлежит поверхности, то они пересекаются. Простейшим случаем является пересечение с поверхностью прямой линии. Задача решается путем заключения данной линии в какую-либо проецирующую плоскость и построением натуральной величины сечения, из которого легко определить точку входа и выхода прямой. Задачи такого типа рассматриваются в § 63.

Точка может принадлежать поверхности и не принадлежать. Об этом говорит сайт https://intellect.icu . Точка принадлежит поверхности, если она лежит на линии, расположенной на этой поверхности. На рис. 104, в точка М принадлежит сферической поверхности, так как она находится на линии окружности /г', лежащей на этой поверхности. Точки А и В тоже принадлежат сферической поверхности, так как они расположены на линиях очерковых окружностей, принадлежащих сферической поверхности. Примеры принадлежности точки поверхности можно привести и в случае наличия конической поверхности (точка М на рис. 104, а),поверхности тора (точка М на рис. 105) и поверхности более сложной формы (точка М на рис. 103).

Задача определения принадлежности точки поверхности решается следующим способом. Если заданы проекции элементов поверхности и точки, необходимо на одной из плоскостей проекций через заданную точку провести линию, принадлежащую поверхности, и построить проекцию этой линии на одной плоскости проекций. Если вторая проекция пройдет через вторую проекцию точки — точка принадлежит поверхности, если не пройдет — не принадлежит.

Эту задачу можно рассмотреть на примере рис. 104, а. На комплексном чертеже задана коническая поверхность очерковыми линиями. Задана также точкаМ горизонтальной и фронтальной проекций. Через горизонтальную проекцию точки проведем горизонтальную проекцию h1окружности, принадлежащей конической поверхности. Построив фронтальную проекцию h2 этой окружности, убеждаемся, что она прошла через фронтальную проекцию точки. Это и подтверждает, что точка принадлежит конической поверхности.

Данная задача может быть решена и другим путем. При тех же исходных данных через фронтальную проекцию М1 точки проводим проекцию одной из образующих f Построив горизонтальную проекцию h образующей, убеждаемся, что она прошла через горизонтальную проекцию М1 точки М, и это позволяет сделать вывод о том, что точка М принадлежит конической поверхности.

Принципы построения точек и линий на поверхностях положены в основу построения линий пересечения, срезов, вырезов, проницаний и др., что определяет построение сложных геометрических тел, и в итоге — деталей, узлов, машин, зданий, сооружений.

Тебе нравиться точка на поверхности? или у тебя есть полезные советы и дополнения? Напиши другим читателям ниже. Надеюсь, что теперь ты понял что такое точка на поверхности, линия на поверхности и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Начертательная геометрия и инженерная графика

Из статьи мы узнали кратко, но содержательно про точка на поверхности
создано: 2014-09-21
обновлено: 2024-11-13
335



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Начертательная геометрия и инженерная графика

Термины: Начертательная геометрия и инженерная графика