Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

47. Расположение плоскости относительно плоскостей проекций. Взаимное расположение двух плоскостей

Лекция



Привет, мой друг, тебе интересно узнать все про расположение плоскости относительно плоскостей проекций взаимное расположение двух плоскостей, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое расположение плоскости относительно плоскостей проекций взаимное расположение двух плоскостей , настоятельно рекомендую прочитать все из категории 8. Поверхности.

По расположению относительно плоскостей проекций плоскости делят на плоскости общего и частного положения.

К плоскостям общего положения относятся плоскости, непараллельные и неперпендикулярные ни одной из плоскостей проекций. На комплексном чертеже (см. рис. 88) проекции элементов, которыми задана плоскость, как правило, занимают общее положение.

К плоскостям частного положения относятся плоскости, параллельные или перпендикулярные одной из плоскостей проекций.

47. Расположение плоскости относительно плоскостей проекций. Взаимное расположение двух плоскостей

Рис. 89

В свою очередь, плоскости частного положения делятся на проецирующие плоскости и плоскости уровня. К проецирующим плоскостям относятся плоскости, перпендикулярные одной из плоскостей проекций. Все проецирующие плоскости будем обозначать буквой Е. Проецирующие плоскости могут быть перпендикулярны П1, П2 или П3. В зависимости от этого различают горизонтально проецирующие плоскости, когда Sum_|_ П1 фронтально проецирующие плоскости, когда Sum_|_П2профильно проецирующие плоскости, когда Sum_|_П3;

Проецирующая плоскость отличается тем, что проекция ее на плоскость проекций, ей перпендикулярную, всегда изображается в виде прямой линии и фигур, лежащих в проецирующей плоскости. Об этом говорит сайт https://intellect.icu . Проекция плоскости, выраженной в прямой, вполне определяет положение плоскости относительно плоскостей проекций. Например, на рис. 89, а приведен комплексный чертеж плоскости I, заданной двумя параллельными прямыми. Из рисунка видно, что I (а \\ Ъ)является горизонтально проецирующей плоскостью и расположена под углом Р к фронтальной плоскости проекций и под углом у с фронтальной плоскостью проекций.

На рис. 89, б приведен комплексный чертеж плоскости Sum, составляющей угол а с горизонтальной плоскостью проекций и угол у с фронтальной плоскостью проекций. Это можно записать так: AВС ~ A2 ~ Sum2B2 ~ Sum2, C2 ~ Sum2.

Наличие вырожденной проекции дает возможность задавать проецирующие плоскости на комплексном чертеже только одной проекцией. На рис. 89, в через точку А проведена профильно проецирующая плоскость (Sum_|_П3) под углом а к П1.

Все изображения, расположенные в заданной плоскости, на плоскости, не перпендикулярные ей, проецируются с искажением.

К плоскостям уровня относятся плоскости, параллельные одной из плоскостей проекций. Их можно считать дважды проецирующими

47. Расположение плоскости относительно плоскостей проекций. Взаимное расположение двух плоскостей

Рис. 90

плоскостями, так как у них на комплексном чертеже две проекции имеют вид прямой, расположенной под прямым углом к линии связи, а третья проекция дает изображение всех элементов, лежащих в этой плоскости, в натуральную величину. Плоскости уровня обычно обозначаются: Г— горизонтальная плоскость уровня; Ф — фронтальная плоскость уровня; U — профильная

плоскость уровня. На рис. 90, а дан комплексный чертеж плоскости горизонтального уровня (Г || П1); на рис. 90, б приведен комплексный чертеж плоскости фронтального уровня (Ф || П2), Ф э АВС, А2В2С2 — истинная величина треугольника ABC; на рис. 90, в показан комплексный чертеж профильно проецирующей плоскости (U || П3, u аА; А ~ а).

Плоскости уровня отличаются тем, что на плоскости проекций, им перпендикулярную, они проецируются в прямую линию, на которой располагаются точки, прямые и фигуры, расположенные в плоскости уровня. Эти прямые являются вырожденными проекциями заданной плоскости. На плоскость проекций, параллельную заданной плоскости, все изображения этой плоскости проецируются без искажений, т. е. в натуральную величину.

Две плоскости в пространстве могут быть параллельными или пересекаться. Параллельными будут плоскости, если одна из них задана пересекающимися прямыми, параллельными пересекающимся, за-

47. Расположение плоскости относительно плоскостей проекций. Взаимное расположение двух плоскостей

Рис. 91

дающим вторую плоскость; на рис. 91 показаны параллельные плоскости: Sum (ахb) и Sum2 (cxd), причем а || с, ab || d.

Если плоскости пересекаются, то линия их пересечения — прямая. Плоскости, перпендикулярные между собой, представляют случай их пересечения, когда угол между плоскостями составляет 90°.

Построение линий пересечения плоскостей рассматривается в §62.

 

Тебе нравиться расположение плоскости относительно плоскостей проекций взаимное расположение двух плоскостей? или у тебя есть полезные советы и дополнения? Напиши другим читателям ниже. Надеюсь, что теперь ты понял что такое расположение плоскости относительно плоскостей проекций взаимное расположение двух плоскостей и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории 8. Поверхности

Из статьи мы узнали кратко, но содержательно про расположение плоскости относительно плоскостей проекций взаимное расположение двух плоскостей
создано: 2014-09-21
обновлено: 2021-03-13
132575



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:
Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей



Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

8. Поверхности

Термины: 8. Поверхности