Лекция
Привет, мой друг, тебе интересно узнать все про метод кирхгофа, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое метод кирхгофа, закон кирхгофа , настоятельно рекомендую прочитать все из категории Электротехника, Схемотехника, Аналоговые устройства.
В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Правила сформулированы в 1845 году, это не единственное открытие Кирхгофа. Кирхгоф и Бунзен активно изучали спектры излучения химических элементов, используя изобретения Фраунгофера. При помощи призмы или дифракционной решетки свет раскладывался на спектральные составляющие, и ученые наблюдали эффект. Так установлены индивидуальные частоты ряда элементов таблицы Менделеева. Указанные ученые заложили основы спектроскопии. Кирхгоф массу времени посвятил разным отраслям науки. К примеру, нашел ошибку в постановке граничных условий для решения дифференциальных уравнений по колебаниям мембран, представленных на суд публики в 1811 году Софи Жермен. Не нужно думать, что словосочетание закон кирхгофа узко ограничено двумя правилами, причем одно прямо приводит к сформулированному ранее закону Ома.
нем. Gustav Robert Kirchhoff | |
Дата рождения | 12 марта 1824 |
---|
Пример сложной электрической цепи вы можете посмотреть на рисунке 1.
Рисунок 1. Сложная электрическая цепь.
Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.
Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.
Самый точный метод, но с его помощью можно определять параметры схемы с небольшим количеством контуров (1-3).
Алгоритм:
1. Определить количество узлов q, ветвей p и независимых контуров;
2. Задаться направлениями токов и обходов контуров произвольно;
3. Установить число независимых уравнений по 1-ому закону Кирхгофа (q - 1) и составить их, где q-количество узлов;
4. Определить число уравнений по 2-ому закону Кирхгофа (p – q + 1) и составить их;
5. Решая совместно уравнения, определяем недостающие параметры цепи;
6. По полученным данным производится проверка расчетов, подставляя значения в уравнения по 1-ому и 2-ому законам Кирхгофа или составив и рассчитав баланс мощностей.
Пример:
Рис 1. Согласно предложенному алгоритму, определим количество узлов и ветвей схемы рис. 1
q = 3, p = 5, следовательно, уравнений по 1-ому закону Кирхгофа равно 2, а уравнений по 2-ому закону Кирхгофа равно 3.
Запишем эти уравнения согласно правилам:
Составим уравнения баланса мощностей:
Правила Кирхгофа (часто в технической литературе называются Зако́нами Кирхго́фа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи.
Решения систем линейных уравнений, составленных на основе правил Кирхгофа, позволяют найти все токи и напряжения в электрических цепях постоянного, переменного и квазистационарного тока .
Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчетов сложных электрических цепей.
Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений и, соответственно, при решении этой системы найти значения токов на всех ветвях цепи и все межузловые напряжения.
Сформулированы Густавом Кирхгофом в 1845 году .
Название «Правила» корректнее потому, что эти правила не являются фундаментальными законами природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля (третье уравнение Максвелла при неизменном магнитном поле). Эти правила не следует путать с еще двумя законами Кирхгофа в химии и физике.
Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.
Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.
[[s|kirgof1.txt]]
Поясним первый закон Кирхгофа на примере рисунка 2.
Рисунок 2. Узел электрической цепи.
Здесь ток I1- ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:
I1 = I2 + I3 (1)
Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I3 в левую часть выражения (1), тем самым получим:
I1 - I2 - I3 = 0 (2)
Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.
Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).
Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.
[[s|kirgof2.txt]]
Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:
1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).
2. Произвольно выбираем направление токов через элементы цепи.
3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:
- ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».
- напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».
Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.
Рисунок 3. Об этом говорит сайт https://intellect.icu . Электрическая цепь, для пояснения второго закона Кирхгофа.
E1- Е2 = -UR1 - UR2 или E1 = Е2 - UR1 - UR2 (3)
Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.
Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.
Рисунок 4. Пример расчета сложной электрической цепи.
Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:
I = I1 + I2,
так как I1 и I2 втекают в узел А, а ток I вытекает из него.
Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.
Для внешнего контура:
E1-E2 = Ur1 – Ur2 или E1-E2 = I1*r1 – I2*r2
Для внутреннего левого контура:
E1 = Ur1 + UR или E1 = I1*r1 + I*R
Итак, у нас получилась система их трех уравнений с тремя неизвестными:
I = I1 + I2;
E1-E2 = I1*r1 – I2*r2;
E1 = I1*r1 + I*R.
Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:
I = I1 + I2;
7 = 0,1I1 – 0,1I2;
12 = 0,1I1 +2I.
Далее из первого и второго уравнения выразим ток I2
I2=I - I1;
I2 = I1 – 70;
12 = 0,1I1 + 2I.
Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:
I - I1= I1 – 70;
12 = 0,1I1 + 2I.
Выражаем из первого уравнения значение I
I = 2I1– 70;
И подставляем его значение во второе уравнение
12 = 0,1I1 + 2(2I1 – 70).
Решаем полученное уравнение
12 = 0,1I1 + 4I1 – 140.
12 + 140= 4,1I1
I1=152/4,1
I1=37,073 (А)
Теперь в выражение I = 2I1– 70 подставим значение
I1=37,073 (А) и получим:
I = 2*37,073 – 70 = 4,146 А
Ну, а согласно первому закона Кирхгофа ток I2=I - I1
I2=4,146 - 37,073 = -32,927
Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I2 вытекает из узла А.
Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.
Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.
Рисунок 5. Сравнение результатов расчета и моделирования работы цепи.
Правила Кирхгофа имеют прикладной характер и позволяют наряду и в сочетании с другими приемами и способами (метод эквивалентного генератора, принцип суперпозиции, способ составления потенциальной диаграммы) решать задачи электротехники. Правила Кирхгофа нашли широкое применение благодаря простоте формулировки уравнений и возможности их решения стандартными способами линейной алгебры (методом Крамера, методом Гаусса и др.).
Закон излучения Кирхгофа гласит — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.
В современной формулировке закон звучит следующим образом:
Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.
Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону, именуемому излучательной способностью тела .
Величины и могут сильно меняться при переходе от одного тела к другому, однако, согласно закону излучения Кирхгофа, отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:
По определению, абсолютно черное тело поглощает все падающее на него излучение, то есть для него . Поэтому функция совпадает с излучательной способностью абсолютно черного тела, описываемой формулой Планка, вследствие чего излучательная способность любого тела может быть найдена, исходя лишь из его поглощательной способности.
Реальные тела имеют поглощательную способность меньше единицы, а значит, и меньшую, чем у абсолютно черного тела, излучательную способность. Тела, поглощательная способность которых не зависит от частоты, называются серыми. Их спектр имеет такой же вид, как и у абсолютно черного тела. В общем же случае поглощательная способность тел зависит от частоты и температуры, и их спектр может существенно отличаться от спектра абсолютно черного тела. Изучение излучательной способности разных поверхностей впервые было проведено шотландским ученым Лесли при помощи его же изобретения — куба Лесли.
В теоретических исследованиях для характеристики спектрального состава равновесного теплового излучения удобнее пользоваться функцией частоты . В экспериментальных работах удобнее пользоваться функцией длины волны . Обе функции связаны друг с другом формулой
В астрофизике закон Кирхгофа часто применяется в следующем виде:
,
где — коэффициент излучения (энергия, излучаемая единичным объемом в единичном интервале частот в единичный телесный угол за единицу времени); — коэффициент поглощения с учетом вынужденного испускания (, где — плотность вещества, а и — соответственно непрозрачность и эффективная длина пробега фотонов для частоты ); — интенсивность излучения абсолютно черного тела.
Закон Кирхгофа справедлив только для случаев теплового равновесия. Однако, его часто применяют и для неравновесных систем, когда излучение не находится в равновесии с веществом и его распределение по частотам существенно отличается от планковского. При этом часто (но не всегда) предположение о термодинамическом равновесии между частицами излучающего вещества оказывается хорошим приближением. Степень отклонения от закона Кирхгофа может служить мерой отличия излучения космических объектов от теплового.
Закон Кирхгофа гласит — температурный коэффициент теплового эффекта химической реакции равен изменению теплоемкости системы в ходе реакции.
Дифференциальная форма закона:
Интегральная форма закона:
где и — изобарная и изохорная теплоемкости, — разность изобарных теплоемкостей продуктов реакции и исходных веществ, — разность изохорных теплоемкостей продуктов реакции и исходных веществ, а и — соответствующие тепловые эффекты.
Если разница невелика, то можно принять и , соответственно интегральная форма уравнений примет следующий вид:
При большой разнице температур необходимо учитывать температурные зависимости теплоемкостей: и
Понравилась статья про метод кирхгофа? Откомментируйте её Надеюсь, что теперь ты понял что такое метод кирхгофа, закон кирхгофа и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электротехника, Схемотехника, Аналоговые устройства
Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.
Комментарии
Оставить комментарий
Электротехника, Схемотехника, Аналоговые устройства
Термины: Электротехника, Схемотехника, Аналоговые устройства