Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Эмиттерная стабилизация кратко

Лекция



Привет, Вы узнаете о том , что такое эмиттерная стабилизация, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое эмиттерная стабилизация , настоятельно рекомендую прочитать все из категории Электротехника, Схемотехника, Аналоговые устройства.

Характеристики электронных устройств во многом определяются режимом работы транзистора. Однако режим работы транзистора зависит от многих факторов и в первую очередь от коэффициента усиления самого транзистора. Коэффициент усиления транзистора по току h21э меняется в зависимости от температуры, разброса параметров самих транзисторов, напряжения питания, радиации.

Для стабилизации режима работы транзистора применяется отрицательная обратная связь по постоянному току и наилучшими характеристиками обладает схема эмиттерной стабилизации. В схемах усилителей радиочастоты и усилителей промежуточной частоты эмиттерная стабилизация применяется так же часто, как и в схемах усилителей низкой частоты. Схема эмиттерной стабилизации в каскаде с общим эмиттером приведена на рисунке 1.

Эмиттерная стабилизация
Рисунок 1. Схема эмиттерной стабилизации в каскаде с общим эмиттером

Обратите внимание, что схема приведена для полосового усилителя, такого как усилитель промежуточной частоты или усилитель радиочастоты. Схема эмиттерной стабилизации в каскаде с общим коллектором приведена на рисунке 2.

Эмиттерная стабилизация
Рисунок 2. Схема эмиттерной стабилизации в каскаде с общим коллектором

Подобным же образом выглядит и схема эмиттерной стабилизации в каскаде с общей базой. Об этом говорит сайт https://intellect.icu . Схема эмиттерной стабилизации в каскаде с общей базой приведена на рисунке 3.

Эмиттерная стабилизация
Рисунок 3. Схема эмиттерной стабилизации в каскаде с общей базой

Как видно из рисунков 1...3 схема эмиттерной стабилизации в каскадах с различным включением транзистора не изменяется. Меняются только точки подачи входного сигнала и подключения нагрузки. Поэтому работу схемы эмиттерной стабилизации можно рассмотреть без учета схемы включения транзистора по переменному току. Обобщенная схема эмиттерной стабилизации (схема включения по постоянному току) приведена на рисунке 4.

Эмиттерная стабилизация
Рисунок 4. Обобщенная схема эмиттерной стабилизации

Рассмотрим как работает эта схема. В схеме эмиттерной стабилизации ток через резисторы R1 и R2 задается в несколько раз больше тока базы транзистора. В результате напряжение на базе транзистора не зависит от его тока базы. Пусть за счет увеличения температуры или напряжения питания увеличится коллекторный ток транзистора. Тогда по закону Ома увеличится падение напряжения на резисторе R3. Напряжение на эмиттере транзистора увеличилось. Но напряжение на базе транзистора равно сумме напряжения на эмиттере и напряжения база-эмиттер транзистора:

Uб = Uэ + Uбэ

А значит напряжение база-эмиттер транзистора равно:

Uбэ = Uб – Uэ

Если напряжение на эмиттере увеличивается, то напряжение Uбэ уменьшается, а это приводит к уменьшению базового тока. Но ток коллектора связан с током базы известным соотношением:

iк = iб*h21э

Следовательно ток коллектора тоже уменьшается до первоначального значения! Точно такой же результат мы получим, если за счет температуры или других дестабилизирующих факторов ток коллектора попытается уменьшиться.

Теперь рассмотрим как можно рассчитать значение элементов схемы эмиттерной стабилизации. Напряжение на эмиттере транзистора обычно выбирают равным половине питания схемы. Для кремниевых транзисторов напряжение база-эмиттер равно 0,7 В. Напряжение на базе транзистора по закону Киргофа равно сумме напряжения на эмиттере и напряжения база-эмиттер транзистора. Поэтому напряжение на базе транзистора должно быть равно:

Uб = Uп/2 + Uбэ = 3,3 В/2 + 0,7 В = 2,4 В

Рассчитанное напряжение на базе транзистора может быть получено при помощи сопротивлений R1 и R2. Для того, чтобы транзистор не влиял на это напряжение ток через эти резисторы выбирается в десять раз больше тока базы транзистора. Ток базы можно определить, задавшись рабочим током коллектора транзистора. Обычно задаются значением тока 5 мА. (Если требуется работа в режиме микропотребления, то можно выбрать меньший ток, например, в районе 100 мкА, но при этом резко упадет коэффициент усиления транзистора по току.) Тогда ток базы будет равен:

iб = iк/h21э = 5 мА/20 = 250 мкА

И тогда ток делителя через резисторы R1 и R2 определяется следующим образом:

iд = iб*10 = 250 мкА * 10 = 2,5 мА

Зная ток и напряжение на базе транзистора, по закону Ома можно определить сопротивление R2:

R2 = Uб/iд = 2,4 В/2,5 мА = 960 Ом

Точно так же зная ток и напряжение питания схемы, по закону Ома можно определить суммарное сопротивление R1 + R2:

R1 + R2 = Uп/iд = 3,3 В/2,5 мА = 1,32 кОм

Отсюда:

R1 = (R1 + R2) – R2 = 1,32 кОм – 960 Ом = 360 Ом

Анализ данных, представленных в статье про эмиттерная стабилизация, подтверждает эффективность применения современных технологий для обеспечения инновационного развития и улучшения качества жизни в различных сферах. Надеюсь, что теперь ты понял что такое эмиттерная стабилизация и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электротехника, Схемотехника, Аналоговые устройства

Из статьи мы узнали кратко, но содержательно про эмиттерная стабилизация
создано: 2018-06-10
обновлено: 2021-03-13
132265



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей



Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Электротехника, Схемотехника, Аналоговые устройства

Термины: Электротехника, Схемотехника, Аналоговые устройства