Лекция
Привет, Вы узнаете о том , что такое электромеханика, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое электромеханика , настоятельно рекомендую прочитать все из категории Электротехника, Схемотехника, Аналоговые устройства.
электромеханика — раздел электротехники, в котором рассматриваются общие принципы электромеханического преобразования энергии и их практическое применение для проектирования и эксплуатации электрических машин.
Электромеханика - фундаментальная наука , изучающая электромеханическое преобразование энергии. Техническое применение электромеханики базируется на глубоких знаниях физики и математики, электротехники и электроники , механики и материаловедения , кибернетики и вычислительной техники и наглядно проявляется в таких сложных и экологически чистых электромеханических преобразователях, как электрические машины .
Электромеханика - обобщенное учение о силах, действующих в электромагнитном поле и о проблемах, связанных с проявлением этих сил. Широта этого понятия делает его и очень неопределенным: кроме электрических машин и электропривода , которые естественным образом относятся к электромеханики, к ней же относятся электроакустика , магнитная гидро - и аэродинамика и многое другое
Предметом электромеханики является управление режимами работы и регулирование параметров обратимого преобразования электрической энергии в механическую и механической — в электрическую, включая генерирование и трансформацию электрической энергии.
Электромеханика как наука рассматривает вопросы создания и совершенствования силовых и информационных устройств для взаимного преобразования электрической и механической энергии, электрических, контактных и бесконтактных аппаратов для коммутации электрических цепей и управления потоками энергии .
В соответствии с общероссийским классификатором специальностей по образованию электромеханика является специальностью высшего профессионального образования, подготовка по которой осуществляется в рамках направления 140600 — «Электротехника, электромеханика и электротехнологии» .
Одной из первых работ по электромеханике является работа, посвященная теории и проектированию обмоток электрических машин постоянного тока, которая была опубликована в 1891 году швейцарским ученым Энгельбертом Арнольдом .
В первые три десятилетия XX в. в трудах Э. Арнольда, А. Блонделя, М. Видмара, Л. Дрейфуса, М. П. Костенко, К. А. Круга и В. А. Толвинского была разработана теория установившихся режимов электрических машин.
В 1895 г. А. Блондель предложил метод двух реакций для анализа синхронных машин.
В 1929 г. Р. Парк[en], используя метод двух реакций, вывел дифференциальные уравнения синхронной машины, названные его именем.
В 1938—1942 гг. Г. Крон создал обобщенную теорию электрических машин (дифференциальные уравнения идеализированной обобщенной электрической машины) и разработал методы тензорного и матричного анализов электрических цепей и машин.
В 1963 г. И. П. Копылов предложил математическую модель обобщенного электромеханического преобразователя для несинусоидального магнитного поля в воздушном зазоре, применимую для симметричных и несимметричных электрических машин с любым числом фаз обмоток статора и ротора и учитывающую нелинейность изменения их параметров.
История развития электромеханики свидетельствует о существовании двух крайних подходов теории электромеханического преобразования энергии: на базе теории поля и теории электрических цепей . Теория поля развивается на основе уравнений Максвелла, а теория кругов - на основе уравнений Кирхгофа .
Знание истории развития электромеханики необходимо для глубокого понимания идей и закономерностей, определяющих будущее электротехнической науки и ее практическое применение. История электромеханики убедительно свидетельствует о том, как научные открытия и теоретические исследования дают новые инженерные решения, а практические достижения обеспечивают дальнейшее развитие теории.
К развитию современной электроники , электромеханические устройства широко использовались как часть сложных систем, в том числе электрических пишущих машинок , телетайпов , очень ранних телевизионных систем и самых ранних электромеханических цифровых вычислительных машин .
Развитие электромеханики ведет к созданию новых ЭМП с жидким, газообразным ротором, электрических машин с необычной геометрией и необычных применений.
Академик А. Г. Иосифьян дал общее определение электромеханики: «Электромеханика — наука о движении и взаимодействии вещественных инерциальных макроскопических и микроскопических тел, связанных с электрическими и магнитными полями» . Учитывая то, что для приведения покоящегося тела в движение требуется действие силы, определение, данное Иосифьяном А. Г., может быть приведено к следующей форме: «Электромеханика — обобщенное учение о силах, действующих в электромагнитном поле и о проблемах, связанных с проявлением этих сил»[10].
В зарубежных источниках встречается следующее определение: «Электромеханика — технология, рассматривающая вопросы, связанные с электромеханическими компонентами, устройствами, оборудованием, системами или процессами»[11], где под электромеханическими компонентами подразумеваются электрические машины.
Электромеханика находится где-то между теорией электромагнитных явлений и механикой. Общие явления - движение частиц и тел, определяются не только взаимодействием сил механического происхождения, но и электромагнитными силами. Это обусловлено тем, что движение указанных частиц и тел происходит в области пространства, занятой электромагнитным полем, а сами подвижные тела несут электрические заряды или токи.
Таким образом, электромагнитная сила оказывается функцией механических величин - скорости и положения тела в пространстве. Поэтому «разделить» систему уравнений, описывающих состояние ЭМП (электромагнитного преобразователя), на чисто электрическую или механическую части не представляется возможным. Наиболее общий подход к решению задач электромеханики заключается в рассмотрении тела, несет ток или заряд, в электромагнитном поле. Это может быть сделано с помощью основных уравнений электродинамики - уравнений электромагнитного поля Максвелла . Однако необходимость определения граничных условий при решении этих уравнений делает такой подход достаточно сложным даже в самых простых случаях.
Поэтому лучше исходить из возможности представления любого ЭМП в виде «совокупности» электрических и магнитных цепей с сосредоточенными параметрами. Это проявляется допустимым, в результате «малых» скоростей течения физических процессов и «низких» частот изменения величин. Указанное позволяет формулировать динамические уравнения движения на основе параметров, определенных из расчета статических (квазистатических) полей.
Как правило, под законами электромеханики подразумевают следующие законы электродинамики, необходимые для анализа процессов и проектирования электромеханических преобразователей[12].
1. Об этом говорит сайт https://intellect.icu . Закон электромагнитной индукции Фарадея:
где — ЭДС, — магнитный поток, — магнитная индукция в данной точке поля, — активная длина проводника в пределах равномерного магнитного поля с индукцией , расположенного в плоскости, перпендикулярной к направлению магнитных силовых линий, — скорость проводника в плоскости, нормальной к , в направлении, перпендикулярном к .
2. Закон полного тока для магнитной цепи (1-е уравнение Максвелла в интегральной форме):
где — вектор напряженности магнитного поля, — элементарное перемещение вдоль некоторого пути в магнитном поле, — величина полного тока, который охватывается контуром интегрирования.
3. Закон электромагнитных сил (закон Ампера).
Профессор МЭИ Копылов И. П. сформулировал три общих закона электромеханики[13]:
1-й закон: Электромеханическое преобразование энергии не может осуществляться без потерь, его КПД всегда меньше 100 %.
2-й закон: Все электрические машины обратимы, одна и та же машина может работать как в режиме двигателя так и в режиме генератора.
3-й закон: Электромеханическое преобразование энергии осуществляется неподвижными друг относительно друга полями. Ротор может вращаться с той же скоростью, что и поле (в синхронных машинах), или с другой скоростью (в асинхронных машинах), однако поля статора и ротора в установившемся режиме неподвижны относительно друг друга.
1.Основное уравнение электрической машины[14] — уравнение, связывающее между собой величины диаметра ротора и длины ротора с мощностью двигателя и числом оборотов в минуту:
где — диаметр ротора, — длина ротора, — синхронная скорость вращения ротора в об/мин (равная скорости вращения первой гармоники МДС обмотки статора), — мощность электрической машины в кВт, — коэффициент мощности, — обмоточный коэффициент, учитывающий влияние распределения обмотки в пазах и влияние укорочения шага обмотки, — амплитуда нормальной составляющей магнитной индукции в зазоре машины, — «линейная нагрузка», равная числу амперпроводников, приходящихся на 1 погонный сантиметр длины окружности статора. Правая часть основного уравнения для данного (известного) типа машины изменяются в сравнительно узких пределах и называется «машинной постоянной» или постоянной Арнольда
2.Уравнения равновесия напряжений обмоток электрической машины — уравнения, составленные для цепей обмоток на основании второго закона Кирхгофа
Для асинхронной машины с короткозамкнутым ротором уравнения равновесия напряжений имеют вид[15]:
где — фазное напряжение статора, и — фазные токи статора и ротора, и — активные сопротивления обмоток статора и ротора, и — индуктивные сопротивления рассеяния статора и ротора, и — ЭДС, индуктированные в обмотках статора и ротора результирующим магнитным потоком полей статора и ротора.
3.Уравнение электромагнитного момента
Уравнение электромагнитного момента асинхронной машины имеет вид[16]:
где — число фаз обмотки статора, — число пар полюсов, — действующее значение напряжения статора, — частота тока статора, — активное сопротивление ротора, приведенное к статору, — активное сопротивление фазной обмотки статора, — индуктивное сопротивление короткого замыкания, приблизительно равное сумме индуктивности рассеяния статора и приведенной к статору индуктивности рассеяния ротора .
Уравнение электромагнитного момента синхронной машины[15] :
где — ЭДС, индуктируемая в обмотке статора потоком ротора, — угол нагрузки (угол сдвига фаз между ЭДС и напряжением статора), — продольное и поперечное синхронные индуктивные сопротивления обмотки статора.
В соответствии с ГОСТом , определяющим содержание подготовки выпускников вузов по специальности "Электромеханика, " в электромеханике рассматриваются следующие вопросы:
Учебники по электромеханике содержат такие темы как[12]:
Исследование, описанное в статье про электромеханика, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое электромеханика и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электротехника, Схемотехника, Аналоговые устройства
Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.
Комментарии
Оставить комментарий
Электротехника, Схемотехника, Аналоговые устройства
Термины: Электротехника, Схемотехника, Аналоговые устройства