Лекция
Привет, мой друг, тебе интересно узнать все про распознавание символов, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое распознавание символов , настоятельно рекомендую прочитать все из категории Моделирование мыслительных процессов на естественном языке и Символьное моделирование.
В случае, когда речь идет о распознавании печатных символов следует упомянуть, что почти бесконечное разнообразие печатной продукции изготавливается при помощью ограниченного набора оригиналов символов, которые группируются по стилю (набору художественных решений), который отличает данную группу от других. Одна группа, включающая все алфавитные знаки, цифры и стандартный набор служебных символов, называется гарнитурой. Однако в широком кругу людей, имеющих дело с производством различного рода документации, утвердилось другое название гарнитуры - шрифт; этого термина мы и будем придерживаться в дальнейшем.
Итак любой печатный текст имеет первичное свойство - шрифты, которыми он напечатан. С этой точки зрения существуют два класса алгоритмов распознавания печатных символов: шрифтовой и безшрифтовый (omnifont). Шрифтовые или шрифтозависимые алгоритмы используют априорную информацию о шрифте, которым напечатаны буквы. Это означает, что программе ОРС должна быть предъявлена полноценная выборка текста, напечатанного данным шрифтом. Программа измеряет и анализирует различные характеристики шрифта и заносит их в свою базу эталонных характеристик. По окончании этого процесса шрифтовая программа оптического распознавания символов (ОРС) готова к распознаванию данного конкретного шрифта. (В последнее время, задачи при решении которых требуется обучение стали ассоциироваться с применением нейронных сетей, однако здесь развивается технология не использующая НС). Этот процесс условно можно назвать обучением программы. Далее обучение повторяется для некоторого множества шрифтов, которое зависит от области применения программы. К недостаткам данного подхода следует отнести следующие факторы:
- Алгоритм должен заранее знать шрифт, который ему представляют для распознавания, т.е. он должен хранить в базе различные характеристики этого шрифта. Качество распознавания текста, напечатанного произвольным шрифтом, будет прямо пропорционально корреляции характеристик этого шрифта со шрифтами, имеющимися в базе программы. При существующем богатстве печатной продукции в процессе обучения невозможно охватить все шрифты и их модификации. К примеру, Полиграфбуммаш СССР в свое время стандартизировал около 15-20 различных шрифтов, в современных компьютерных системах верстки документов используется более 100 шрифтов. Другими словами, этот фактор ограничивает универсальность таких алгоритмов.
- Для работы программы распознавания необходим блок настройки на конкретный шрифт. Очевидно, что этот блок будет вносить свою долю ошибок в интегральную оценку качества распознавания, либо функцию установки шрифта придется возложить на пользователя.
- Программа, основанная на шрифтовом алгоритме распознавания символов, требует от пользователя специальных знаний о шрифтах вообще, об их группах и отличиях друг от друга, шрифтах, которыми напечатан документ, пользователя. Отметим, что в случае, если бумажный документ не создан самим пользователем, а пришел к нему извне, не существует регулярного способа узнать с использованием каких шрифтов этот документ был напечатан. Фактор необходимости специальных знаний сужает круг потенциальных пользователей и сдвигает его в сторону организаций, имеющих в штате соответствующих специалистов.
С другой стороны, у шрифтового подхода имеется преимущество, благодаря которому его активно используют и, по-видимому, будут использовать в будущем. А именно, имея детальную априорную информацию о символах, можно построить весьма точные и надежные алгоритмы распознавания. Вообще, при построении шрифтового алгоритма распознавания (в отличие от безшрифтового, о чем будет сказано ниже) надежность распознавания символа является интуитивно ясной и математически точно выразимой величиной. Об этом говорит сайт https://intellect.icu . Эта величина определяется как расстояние в каком-либо метрическом пространстве от эталонного символа, предъявленного программе в процессе обучения, до символа, который программа пытается распознать.
Второй класс алгоритмов - безшрифтовые или шрифтонезависимые, т.е. алгоритмы, не имеющие априорных знаний о символах, поступающих к ним на вход. Эти алгоритмы измеряют и анализируют различные характеристики (признаки), присущие буквам как таковым безотносительно шрифта и абсолютного размера (кегля), которым они напечатаны. В предельном случае для шрифтонезависимого алгоритма процесс обучения может отсутствовать. В этом случае характеристики символов измеряет, кодирует и помещает в базу программы сам человек. Однако на практике, случаи, когда такой путь исчерпывающе решает поставленную задачу, встречаются редко. Более общий путь создания базы характеристик заключается в обучении программы на выборке реальных символов. К недостаткам данного подхода можно отнести следующие факторы:
- Реально достижимое качество распознавания ниже, чем у шрифтовых алгоритмов. Это связано с тем, что уровень обобщения при измерениях характеристик символов гораздо более высокий, чем в случае шрифтозависимых алгоритмов. Фактически это означает, что различные допуски и огрубления при измерениях характеристик символов для работы безшрифтовых алгоритмов могут быть в 2-20 раз больше по сравнению с шрифтовыми.
- Следует считать большой удачей, если безшрифтовый алгоритм обладает адекватным и физически обоснованным, т.е. естественно проистекающим из основной процедуры алгоритма, коэффициентом надежности распознавания. Часто приходится мириться с тем, что оценка точности либо отсутствует, либо является искусственной. Под искусственной оценкой подразумевается то, что она существенно не совпадает с вероятностью правильного распознавания, которую обеспечивает данный алгоритм.
Достоинства этого подхода тесно связаны с его недостатками. Основными достоинствами являются следующие:
- Универсальность. Это означает с одной стороны применимость этого подхода в случаях, когда потенциальное разнообразие символов, которые могут поступить на вход системы, велико. С другой стороны, за счет заложенной в них способности обобщать, такие алгоритмы могут экстраполировать накопленные знания за пределы обучающей выборки, т.е. устойчиво распознавать символы, по виду далекие от тех, которые присутствовали в обучающей выборке.
- Технологичность. Процесс обучения шрифтонезависимых алгоритмов обычно является более простым и интегрированным в том смысле, что обучающая выборка не фрагментирована на различные классы (по шрифтам, кеглям и т.д.). При этом отсутствует необходимость поддерживать в базе характеристик различные условия совместного существования этих классов (некоррелированность, не смешиваемость, систему уникального именования и т.п.). Проявлением технологичности является также тот факт, что часто удается создать почти полностью автоматизированные процедуры обучения.
- Удобство в процессе использования программы. В случае, если программа построена на шрифтонезависимых алгоритмах, пользователь не обязан знать что-либо о странице, которую он хочет ввести в компьютерную память и уведомлять об этих знаниях программу. Также упрощается пользовательский интерфейс программы за счет отсутствия набора опций и диалогов, обслуживающих обучение и управление базой характеристик. В этом случае процесс распознавания можно представлять пользователю как “черный ящик” (при этом пользователь полностью лишен возможности управлять или каким-либо образом модифицировать ход процесса распознавания). В итоге это приводит к расширению круга потенциальных пользователей за счет включения в него людей обладающих минимальной компьютерной грамотностью.
Синтез двух подходов
Выше рассматривались особенности, достоинства и недостатки двух подходов к созданию алгоритмов ОРС. Из обзора следует, что достоинства и недостатки обоих подходов определяются одними и теми же свойствами алгоритмов: большей либо меньшей степенью универсальности, степенью достижимой точности распознавания и т.п. Сравнительные недостатки и достоинства обоих подходов сведены в таблицу.
Свойства |
Шрифтовые алгоритмы |
Безшрифтовые алгоритмы |
|
|
|
Универсальность |
Малая степень универсальности, обусловленная необходимостью предварительного обучения всему, что предъявляется для распознавания |
Большая степень универсальности, обусловленная независимостью обучающей выборки от какой-либо системы априорной классификации символов |
Точность распознавания |
Высокая, обусловлена детальной классификацией символов в процессе обучения. А также тем, что материал распознавания находится строго в рамках классов, созданных в процессе обучения |
Низкая (в сравнении с шрифтовыми алгоритмами), что обусловлено высокой степенью обобщения и огрубленными измерениями характеристик символов |
Технологичность |
Низкая (в сравнении с безшрифтовыми алгоритмами), обусловлена различными накладными расходами, связанными с поддержкой классификации символов |
Высокая, обусловлена отсутствием какой-либо априорной системы классификации символов |
Поддержка процесса распознавания со стороны пользователя |
Необходима: - на этапе распознавания для указания конкретных классов символов |
Не требуется |
Если я не полностью рассказал про распознавание символов? Напиши в комментариях Надеюсь, что теперь ты понял что такое распознавание символов и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Моделирование мыслительных процессов на естественном языке и Символьное моделирование
Комментарии
Оставить комментарий
Моделирование мыслительных процессов на естественном языке и Символьное моделирование
Термины: Моделирование мыслительных процессов на естественном языке и Символьное моделирование