Лекция
Это продолжение увлекательной статьи про теории восприятия цвета человеком.
...
розовые.
С раннего возраста люди начинают испытывать позитивные эмоции относительно определенных цветов. В итоге эти эмоции формируют наши цветовые предпочтения.
Экологическая валентность может объяснить эмоциональную насыщенность цветов. Но как они приобретают семантическое значение? Почему мы ассоциируем красный со страстью и романтикой, а черный — с трауром? Ответ скрыт в теории ассоциативных сетей (Bower, 1981).
В ней утверждается, что в нашем мозге существует ассоциативная сеть — сеть взаимосвязанных знаний.
Каждый узел этой сети представляет секцию общего знания, независимо от того, что это:
Связь между этими узлами основывается на том, сколько между ними общего. Чем значительнее соответствие между узлами, тем крепче их связь.
К примеру, ваш «узел машин» будет связан со многими другими. Некоторые связи будут сильнее (в их числе шины, вождение, дороги), а некоторые — слабее (поезда, радио, металл).
В конце ХХ - начале ХХI века в распоряжении у биологов, физиологов, нейрофизиологов и психологов появились и новые инструменты исследования, и новые результаты. Но несмотря на обилие работ в этой области в настоящее время так и не удалось обнаружить никаких различий между колбочковыми рецепторами сетчатки глаза не говоря о уже о наличии трех разных типов колбочек. Кроме того, удалось обнаружить всего два светочувствительных колбочковых пигмента хлоролаб и эритролаб и доказать их одновременное наличие во всех колбочках сетчатки[23]. При этом спектры чувствительности пигментов хлоролаба и эритролаба настолько широкополостны, что каждый из них чувствителен ко всей видимой области спектра.
Современные концепции цветного зрения включают в себя основные идеи, высказанные еще в ХХ веке.
В 2000 г. был опубликован обзор Витковского, а в 2009 г. - аналитический обзор Роберта Марка. Однако, ни одна из приведенных в этих обзорах работ, так и не смогла подтвердить трехкомпонентный механизм цветовосприятия глазом. При этом результаты этих работ не опровергают нелинейную двухкомпонентную теорию цветовосприятия.
В свое время между сторонниками каждой из описанных теорий велись жаркие споры. Об этом говорит сайт https://intellect.icu . Однако сейчас эти теории можно считать взаимно дополняющими интерпретациями цветового зрения. В зонной теории Крисса, предложенной 80 лет назад, была сделана попытка синтетического объединения этих двух конкурирующих теорий. Она показывает, что трехкомпонентная теория пригодна для описания функционирования уровня рецепторов, а оппонентная теория - для описания нейронных систем более высокого уровня зрительной системы.
Например, у животных цвета воспринимаются на базе более, чем трех основных цветов (четырехроматизма, пяти и более).
Фиг.1.Трихроматизм. После повторных исследований в 2009 году работы фоторецепторов на живой сетчатке глаза бабуина в своих выводах по теме:Функциональная нейроанатомия сетчатки, Кафедра офтальмологии, Моран глазной центр, Университет штата Юта; Кафедра офтальмологии, доктор Роберт Э. Марк сформулировал принцип трихроматизма — в цветном зрении в условиях дневного освещения работают колбочки RGB (красные, зеленые, синие), (палочки серо-голубые, работают при слабом и ночном освещении и цвета не воспринимают). . Замечание, на изображении трихроматизма показаны три колбочки с разными цветами, хотя здесь варианты работы одной колбочки тоже в режиме трихроматизма. (См. рис.1).
На базе физики цвета (RGB) и взаимодействия с ним живой среды обитания — биологической, а также на основе колориметрических, гистологических, генетических исследований, на базе достижений в этой области более, чем за 30‒35 лет, на основе биофизики, биохимии, пересмотра основ прежнего сложившегося процесса зрения с разных точек зрения — имеем:
*С точки зрения чисто физической на базе труда (2011 года) ученого физика Джеральда К. Хата, который на базе физики взаимодействия света с внешними долями мембран фоторецепторов сетчатки глаза, где в основном осуществляется первичное взаимодействие со светом на наноуровне («nanostructural») (рецепторное) и доктора физика Джона МедейросаШаблон:, который рассмотрел работу внешних долей мембраны колбочек и палочек с точки зрения аналогичной работе волноводов конической и цилиндрической формы в среде прозрачного тела глаза (жидкая среда). В конечном итоге, физики Дж. К. Хат и Джон Медейрос пришли к общепринятому принципу трихроматизма. (См. Пересмотр традиционных взглядов на зрительный процесс физика К. Хата, Работа внешних мембран колбочек и палочек сетчатки глаза как волновод).
*Данные доктора, физика Джона Медейроса, рассмотрев внешние доли мембран колбочек и палочек, он их рассматривает как биологические волноводы, которые воспринимают световые лучи с фиксацией их в сечениях волноводов, равных размерам поперечного сечения фронта световой волны в обратном порядке прохождения их (внешних долей мембран колбочек) в жидкой среде, нежели в обычных оптических волноводах в воздухе. (Связано с влиянием показателей преломления сред).
*Исследования РАН Е. О. Загальская, В. П. Гнюбкина
В глазу человека содержатся два типа светочувствительных клеток (экстерорецепторов): высокочувствительные палочки и менее чувствительные колбочки. Палочки функционируют в условиях относительно низкой освещенности и отвечают за действие механизма ночного зрения, однако при этом они обеспечивают только нейтральное в цветовом отношении восприятие действительности, ограниченное участием белого, серого и черного цветов. Колбочки работают при более высоких уровнях освещенности, чем палочки. Они ответственны за механизм дневного зрения, отличительной особенностью которого является способность обеспечения цветового зрения.
У приматов (в том числе и человека) мутация вызвала появление цветовых рецепторов. Это было вызвано расширением экологической ниши млекопитающих, переходом части видов к дневному образу жизни, в том числе на деревьях. Мутация была вызвана появлением измененной копии гена, отвечающего за восприятие средней, зеленочувствительной области спектра. Она обеспечила лучшее распознавание объектов «дневного мира» — плодов, цветов, листьев.
У птиц при цветном зрении работабт 4 колбочки, откуда и название статьи носит характер Многокомпонентная теория....
Рис. 2 Видимый, непрерывный спектр света
Рис.14a. Для трех разновидностей колбочек (cones) дан принцип так называемого трехцветного дневного видения (трихроматизм)) у приматов, который также имеется у большинства людей. То есть к длинным волнам чувствительны L-колбочки (красный цвет), как известно они максимально чувствительны к длинам волн максимума вокруг 559 нм, к средним волнам чувствительны M-колбочки (зеленый цвет) с пиком вокруг 531нм и к коротким волнам — S-колбочки (синий цвет) с пиком-419 нм. Палочки чувствительны к длинам волн максимума вокруг 496нм и менеее. Палочки (rod) даны точечной кривой, так как в цветном зрении они не участвуют.
В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зеленый и синий участки спектра. Еще в 1970-х годах было показано, что распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом, что было подтверждено более детальными исследованиями в начале XXI века. Соответствие типов колбочек трем «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трех видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета (эффект метамерии).
Равномерное раздражение всех трех колбочек, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета .
Цветовое зрение человека: При освещении предметов светом с определенными спектральными характеристиками часть света отражается. Рецепторы глаза воспринимают это излучение, формируют нервные сигналы, которые обрабатываются в нервных клетках размещенных в слоях сетчатки глаза и отправляют его в мозг, где формируется ощущение, которое ассоциируется у человека с понятием, цвет.
Установлено [10], что в состав зрительных пигментов входят опсины. Различные опсины различаются аминокислотами в составе молекул, и поглощают свет в несколько различном диапазоне длин волн, как ретиналь-связанные молекулы.
Впервые существование колбочкового пигмента (косвенным образом) было обнаружено Джорджем Уолдом, который и дал ему название йодопсин. . В 1967 г. за эти работы ему была присуждена Нобелевскую премию по физиологии и медицине.
Различные опсины различаются аминокислотами в составе молекул, и поглощают свет в несколько различном диапазоне длин волн, как ретиналь-связанные молекулы.
У человека идентифицировано три вида фотопигментов колбочек йодопсина (фотопсина):
Тип колбочки | Название | Диапазон | Пиковая длина волны |
---|---|---|---|
S (OPN1SW — ген для нормального цветного зрения (S)) — «тритан», «цианолаб» | β | 400—500 нм | 420‒440 нм (УФ, синий) |
M (OPN1MW — ген для нормального цветного зрения (M)) — «деутан», «хлоролаб» | γ | 450—630 нм | 534‒545 нм (зеленый) |
L (OPN1LW — ген для нормального цветного зрения (L)) — «протан», «эритролаб» | ρ | 500—700 нм | 564‒580 нм (красный) |
За цветовое зрение человека и обезьян отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трехкомпонентной теории, наличие трех разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия. У большинства млекопитающих таких генов только два, поэтому они имеют двухцветное зрение. В том случае, если у человека два белка, кодируемые разными генами, оказываются слишком схожи или один из белков не синтезируется, развивается дальтонизм.
Чувствительный к красному свету опсин кодируется у человека геном OPN1LW .
Другие опсины человека кодируют гены OPN1MW, OPN1MW2 и OPN1SW, первые два из них кодируют белки, чувствительные к свету со средними длинами волны, а третий отвечает за опсин, чувствительный к коротковолновой части спектра.
Необходимость трех типов опсинов для цветового зрения недавно была доказана в опытах на беличьей обезьяне (саймири), самцов которых удалось излечить от врожденного дальтонизма путем введения в их сетчатку гена человеческого опсина OPN1LW . Эта работа (вместе с аналогичными опытами на мышах) показала, что зрелый мозг способен приспособиться к новым сенсорным возможностям глаза.
Ген OPN1LW, который кодирует пигмент, отвечающий за восприятие красного цвета, высоко полиморфен (в недавней работе Виррелли и Тишкова было найдено 85 аллелей в выборке из 256 человек ), и около 10 % женщин , имеющих два разных аллеля этого гена, фактически имеют дополнительный тип цветовых рецепторов и некоторую степень четырехкомпонентного цветового зрения.[10] Вариации гена OPN1MW, который кодирует «желто-зеленый» пигмент, встречаются редко и не влияют на спектральную чувствительность рецепторов.
Ген OPN1LW и гены, отвечающие за восприятие света со средней длиной волны, расположены в Х-хромосоме тандемно, и между ними часто происходит негомологичная рекомбинация или генная конверсия. При этом может происходить слияние генов или увеличение числа их копий в хромосоме. Дефекты гена OPN1LW — причина частичной цветовой слепоты, протанопии .
Рис. Аb. Шестиугольная симметрия присутствует на сетчатке глаза в 20° (степенях) оригинальности, где 1 колбочка окружена шестью палочками (нано-антена), когда статистически плотность палочек не достаточна, чтобы полностью окружить каждое уменьшающееся число колбочек по мере удаления от центра желтого пятна к периферии. Джеральд К.Хат.
Рис. А. Восьмиугольная симметрия присутствует на сетчатке глаза в 7‒8° (степенях) оригинальности, где 1 колбочка окружена восьмю палочками (нано-антена), когда статистически плотность палочек сначала достаточна, чтобы полностью окружить каждое уменьшающееся число колбочек по мере удаления от центра желтого пятна к периферии. Джеральд К.Хат.
Теперь перейдем от теории моделей воприятия зрения к способам фиксации видео и фото изображений сенсорами.
Фотоматрица, матрица или светочувствительная матрица — специализированная аналоговая или цифро-аналоговая интегральная микросхема, состоящая из светочувствительных элементов — фотодиодов.
Современная фотоматрица — это микросхема, поверхность которой состоит из множества чувствительных к свету элементов. Каждый элемент является самостоятельным светоприемником, преобразующим падающий на него свет в электрический сигнал, который после предварительной обработки записывается на карту памяти. Изображение, которое мы видим, состоит из совокупности записанных в цифровом виде сигналов с каждого элемента, а значит, имеет дискретную структуру.
Существует две технологии преобразования света в сигнал, на которых может работать матрица фотоаппарата. Первая основана на свойстве полупроводниковых диодов накапливать электрический заряд под воздействием света, и носит название ПЗС (прибор с зарядовой связью) или CCD (то же самое по-английски). Вторая технология также использует накопление заряда, но в качестве приемника применяется не диод, а транзистор, что позволяет организовать усиление сигнала непосредственно в самом светочувствительном элементе. Эта технология называется КМОП (расшифровка мало что скажет неспециалисту, приводить ее не буду) или CMOS по-английски. Соответственно существуют и два типа матриц – ПЗС и КМОП.
Матрица на печатной плате цифрового фотоаппарата
В видео и фото камерах применяются CCD (ПЗС, прибор с зарядовой связью) и CMOS (КМОП, комплементарная структура металл-оксид-полупроводник) светочувствительные матрицы.
Рисунок Структура пикселя и CMOS КМОП-матрицы
Р – светочувствительный элемент
Т — электронные компоненты
кмоп-матрица — светочувствительная матрица, выполненная на основе КМОП-технологии.
В КМОП-матрицах используются полевые транзисторы с изолированным затвором с каналами разной проводимости.
Эквивалентная схема ячейки КМОП-матрицы: 1 — светочувствительный элемент (фотодиод); 2 — затвор; 3 — конденсатор, сохраняющий заряд с диода; 4 — усилитель; 5 — шина выбора строки; 6 — вертикальная шина, передающая сигнал процессору; 7 — сигнал сброса.
В CCD сенсоре свет, который попадает на пиксель, изменяет его "электрическое" состояние. "Информация" об этом передается только через один выходной канал (реже — два). Далее происходит конвертация в уровень напряжения, проходит процедура буферизации и подача на выходе - как аналоговый электрический сигнал. Данный сигнал потом усиливается и конвертируется в цифровое значение, благодаря аналого-цифровому преобразователю (АЦП), который находится вне сенсора.
CMOS сенсоры благодаря технологии производства уже включают в себя усилители и АЦП, соответственно процедура получения изображения позволяет достичь гораздо большей скорости чтения.
Первая матрица работала по технологии ПЗС, поскольку эта технология проще и была внедрена первой. Сейчас более перспективным считается принцип КМОП, поскольку предварительное усиление сигнала непосредственно в элементе матрицы позволяет повысить чувствительность, снизить шумы, сократить энергопотребление и уменьшить стоимость матрицы. Несмотря на это, ПЗС матрицы все еще продолжают использоваться и сегодня.
продолжение следует...
Часть 1 Основы теории восприятия цвета человеком и компьютерной системой (фотоприемной КМОП и ПЗС матрицей), Байеровские фотофильтры
Часть 2 Современные попытки объяснения механизмов цветового зрения - Основы теории восприятия
Часть 3 Устройство одного пикселя ПЗС-матрицы - Основы теории восприятия цвета человеком
Часть 4 - Основы теории восприятия цвета человеком и компьютерной системой (фотоприемной
В заключение, эта статья об теории восприятия цвета человеком подчеркивает важность того что вы тут, расширяете ваше сознание, знания, навыки и умения. Надеюсь, что теперь ты понял что такое теории восприятия цвета человеком, цвет в компьютерной системе, цвет, восприятие цвета, теории цвета, теория цвета, фотоприемная матрица, байеровские фотофильтры, кмоп-матрица, кмоп матрица, пзс матрица и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Методы и средства компьютерных информационных технологий
Комментарии
Оставить комментарий
Методы и средства компьютерных информационных технологий
Термины: Методы и средства компьютерных информационных технологий