Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Сокращение или ликвидация опасных рисков пс: - 10 дефекты, ошибки

Лекция



Это продолжение увлекательной статьи про дефекты ошибки.

...

ресурсов ЭВМ по всем задачам, так как отсутствуют достоверные данные потребных ресурсов для решения каждой из них. В результате возникает либо недостаточное использование, либо, в подавляющем большинстве случаев, нехватка каких-то ресурсов ЭВМ для решения задач в первоначальном варианте. Наиболее крупные просчеты обычно допускаются при оценке времени реализации различных групп программ реального времени и при распределении производительности ЭВМ. Алгоритмические ошибки этого типа обусловлены технической сложностью расчета времени реализации программ и сравнительно невысокой достоверностью определения вероятности различных маршрутов обработки информации.

Ошибки реализации спецификаций компонентов — это программные дефекты, возможно, ошибки требований, структуры или программные ошибки компонентов. Ошибки реализации наиболее обычны и, в общем, наиболее легки для исправления в системе, что не делает проблему легче для программистов (см. таблицу 10.1). В отличие от ошибок требований и структурных ошибок, которые обычно специфичны для приложения, программисты часто совершают при кодировании одни и те же виды ошибок.

Первую категорию составляют дефекты, которые приводят к отображению для пользователя сообщений об ошибках при точном следовании порядку выполнения требуемых функций. Хотя эти сообщения могут быть вполне законны, пользователи могут посчитать это ошибкой, поскольку они делали все правильно и, тем не менее, получили сообщение об ошибке. Часто ошибки этого типа вызваны либо проблемами с ресурсами, либо специфическими зависимостями от данных.

Вторая категория модификаций может содержать ошибки, связанные с дефектами в графическом интерфейсе пользователя. Такие ошибки могут являться либо нестандартными модификациями пользовательского интерфейса, которые приводят к тому, что пользователь совершает неверные

действия, либо они могут быть стандартными компонентами пользовательского интерфейса, используемыми иначе, чем ожидает конечный пользователь.

Третья категория может содержать пропущенные на стадии реализации функции, что всегда считается ошибкой, возможно, с большим риском. Многие тестировщики и пользователи бета-версий сообщают об ошибках, которые на самом деле являются желательными улучшениями. В данном случае можно не замечать обнаруженные таким образом отсутствия функций, которых не было в спецификациях.

Программные ошибки модифицированных компонентов по количеству и типам в первую очередь определяются степенью автоматизации программирования и глубиной статического контроля текстов программ. Количество программных ошибок зависит от квалификаций программистов, от общего размера комплекса программ, от глубины информационного взаимодействия модулей и от ряда других факторов. При разработке ПС программные ошибки можно классифицировать по видам используемых операций на следующие крупные группы: ошибки типов операций; ошибки переменных; ошибки управления и циклов. В логических компонентах ПС эти виды ошибок близки по удельному весу, однако для автоматизации их обнаружения применяются различные методы. На начальных этапах разработки и автономной отладки модулей программные ошибки составляют около одной трети всех ошибок. Каждая программная ошибка влечет за собой необходимость изменения около 10 команд, что существенно меньше, чем при алгоритмических и системных ошибках.

Ошибки в документации модификаций состоят в том, что система делает что-то одним образом, а документация отражает сценарий, что она должна работать иначе. Во многих случаях права должна быть документация, поскольку она написана на основе оригинальной спецификации требований системы. Иногда документация пишется и включает допущения и комментарии о том, как, по мнению авторов документации, система должна работать. В других случаях ошибку можно проследить не до кода, а до документации конечных пользователей, внутренних технологических документов, характеризующих систему, и даже до экранных подсказок и файлов помощи. Ошибки документации можно разделить на три категории — неясность, неполнота и неточность. Неясность — это когда

пользователю не дается достаточно информации, чтобы определить, как сделать процедуру должным образом. Неполная документация оставляет пользователя без информации о том, как правильно реализовать и завершить задачу. Пользователь считает, что задача выполнена, хотя на самом деле это не так. Такие ошибки ведут к тому, что пользователь не удовлетворен версией ПС, даже если программа в действительности может сделать все, что хочет пользователь. Неточная документация — это худший вид ошибок документации. Такие ошибки часто возникают, когда при сопровождении в систему позже вносятся изменения и об этих изменениях не сообщают лицу, пишущему документацию.

Технологические ошибки документации и фиксирования программ в памяти ЭВМ составляют иногда до 10% от общего числа ошибок, обнаруживаемых при тестировании. Большинство технологических ошибок выявляется автоматически статическими методами. При ручной подготовке текстов машинных носителей при однократном фиксировании исходные данные имеют вероятность искажения около 10 "3— 10~4 на символ. Дублированной подготовкой и логическим контролем вероятность технологической ошибки может быть снижена до уровня 10 5 — 10'7 на символ. Непосредственное участие человека в подготовке данных для ввода в ЭВМ и при анализе результатов функционирования программ по данным на дисплеях определяет в значительной степени их уровень достоверности и не позволяет полностью пренебрегать этим типом ошибок в программах.

В примере анализа ошибок конкретного крупного проекта было принято, что завершилась инспекция начального запрограммированного кода крупного ПС на предмет его соответствия рабочей проектной спецификации, в ходе которой было обнаружено 3,48 ошибки на тысячу строк кода. Наибольшее совпадение аппроксимации рэлеевской кривой распределения ошибок с фактическими данными установлено для момента получения этих данных, ему соответствует значение, равное также 3,48. Значения числа ошибок на тысячу строк получены при пересчетах на более ранние этапы соответственно эскизного — (3,3) и рабочего — (7,8) проектирования программ. При прогнозировании в соответствии с рэлеевской кривой распределения вероятности проявления дефектов программ на следующем этапе квалификационного тестирования компонентов следовало ожидать обнаружения около 2,12 ошибки на тысячу строк исходного кода.

В случае сохранения той же закономерности в момент поставки клиенту на испытания программный продукт мог содержать менее 0,07 ошибки на тысячу строк кода. Отмечается также, что частость проявления 0,1—0,05 ошибки на тысячу строк кода можно считать допустимой для ответственных систем реального времени.

В исследованиях 20 крупных поставляемых программных продуктов, созданных в 13 различных организациях, коллективы специалистов добились среднего уровня 0,06 дефекта на тысячу строк нового и измененного программного кода. При использовании структурного метода в пяти проектах достигнуто 0,04—0,075 ошибки на тысячу строк. Таким образом, уровень ошибок около 0,05 на тысячу строк кода в разных публикациях считается близким к предельному для высококачественных программных продуктов.

Другим примером оценок уровня ошибок критического ПС особенно высокого качества может служить программный продукт бортовых систем «Шаттла», созданный NASA. По оценке авторов, в нем содержится менее одной ошибки на 10 000 строк кода. Однако стоимость программного продукта достигает 1000 $ за строку кода, что в среднем в сто раз больше, чем для административных систем, и в десять раз больше, чем для ряда ординарных критических управляющих систем реального времени.

Приведенные характеристики типов дефектов и количественные данные могут служить ориентирами при прогнозировании возможного наличия невыявленных ошибок в ЖЦ различных сложных ПС высокого качества. Следующим логическим шагом процесса их оценивания может быть усреднение для большого числа проектов фактических данных о количестве ошибок на конкретном предприятии, приходящихся на тысячу строк кода, которые обнаружены в различных ПС. Тогда в следующем проекте будет иметься возможность использования этих данных, в качестве меры количества ошибок, обнаружение которых следует ожидать при выполнении проекта с таким же уровнем качества ПС, или с целью повышения производительности при разработке для оценки момента прекращения дальнейшего тестирования. Подобные оценки гарантируют от избыточного оптимизма при определении сроков и при разработке графиков разработки, сопровождения и реализации модификаций программ с заданным качеством. Непредсказуемость конкретных ошибок в програм-

мах приводит к целесообразности последовательного, методичного фиксирования и анализа возможности проявления любого типа дефектов и необходимости их исключения на наиболее ранних этапах ЖЦ ПС при минимальных затратах.

Причинами возникновения и проявления рисков могут быть: злоумышленные, активные воздействия заинтересованных лиц или случайные негативные проявления дефектов внешней среды, системы или пользователей. В первом случае риски могут быть обусловлены искажениями программ и информационных ресурсов и их уязвимостью от предумышленных, внешних воздействий (атак) с целью незаконного использования или искажения информации и программ, которые по своему содержанию предназначены для применения ограниченным кругом лиц. Для решения этой проблемы созданы и активно развиваются методы, средства и стандарты обеспечения защиты программ и данных от предумышленных негативных внешних воздействий. Специфические факторы обеспечения информационной безопасности и риски, характерные для сложных информационных систем, — целостность, доступность и конфиденциальность информационных ресурсов, а также ряд типовых процедур систем защиты — криптографическая поддержка, идентификация и аутентификация, защита и сохранность данных пользователей при предумышленных атаках из внешней среды далее не рассматриваются.

Риски при случайных, дестабилизирующих воздействиях дефектов программных средств и отсутствии предумышленного негативного влияния на системы, ПС или информацию баз данных существенно отличаются от предшествующих задач. Эти риски объектов и систем зависят от отказовых ситуаций, отрицательно отражающихся на работоспособности и реализации их основных функций, причинами которых могут быть дефекты и аномалии в аппаратуре, программах, данных или вычислительных процессах. При этом катастрофически, критически или существенно искажается процесс функционирования систем, что может наносить значительный ущерб при их применении. Основными источниками отказо-

вых ситуаций могут быть некорректные исходные требования, сбои и отказы в аппаратуре, дефекты или ошибки в программах и данных функциональных задач, проявляющиеся при их исполнении в соответствии с назначением. При таких воздействиях внешняя, функциональная работоспособность систем может разрушаться не полностью, однако невозможно полноценное выполнение заданных функций и требований к качеству информации для потребителей. Вредные и катастрофические последствия таких отказов в ряде областей применения систем могут превышать по результатам последствия злоумышленных воздействий, имеют свою природу, особенности и характеристики.

Рассматриваемые риски могут быть обусловлены нарушениями технологий или ограничениями при использовании ресурсов — бюджета, планов, коллектива специалистов, инструментальных средств, выделенных на разработку ПС. Результирующий ущерб в совокупности зависит от величины и вероятности проявления каждого негативного воздействия. Этот ущерб — риск характеризуется разнообразными метриками, зависящими от объектов анализа, и в некоторых случаях может измеряться прямыми материальными, информационными, функциональными потерями применяемых ПС или систем. Одним из косвенных методов определения величины риска может быть оценка совокупных затрат, необходимых для ликвидации негативных последствий в ПС, системе или внешней среде, проявившихся в результате конкретного рискового события.

Процессы анализа и сокращения рисков должны сопутствовать основным этапам разработки и обеспечения ЖЦ сложных программных средств в соответствии с международными стандартами, а также методам систем обеспечения качества ПС. Эти процессы могут быть отражены пятью этапами работ и процедур, которые рекомендуется выполнять при поддержке базовых работ жизненного цикла проектов сложных программных средств, и могут служить основой для разработки соответствующих планов работ при управлении и сокращении рисков — рис. 10.3:

  • анализ рисков следует начинать с подготовки детальных исходных требований и характеристик проекта ПС, системы и внешней среды, для которых должны отсутствовать риски функционирования и применения;

  • для управления рисками и их сокращения в рассматриваемых проектах сложных комплексов программ рекомендуется выделять три класса

рисков: функциональной пригодности ПС, конструктивных характеристик качества и нарушения ограничений ресурсов при реализации процессов ЖЦ ПС;

Подготовка исходных данных:

  • определение целей, назначения и функций проекта программного средства и системы;

  • разработка предварительных требований к функциональной пригодности и конструктивным характеристикам ПС;

  • формирование группы экспертов для анализа угроз и управления рисками

Выделение, идентификация, анализ угроз и рисков программного средства:

  • выделение источников и угроз нарушения требований и ограничений ресурсов, определение критериев работоспособности проекта ПС;

  • анализ причин, выделение категорий угроз и возможных последствий рисков функциональной пригодности ПС;

  • анализ причин, угроз и возможных рисков конструктивных характеристик и ограничения ресурсов проекта ПС

Оценивание опасности угроз и рисков и выбор контрмер для их сокращения:

  • оценивание возможных последствий, уровней потенциальных угроз и приоритетов категории рисков проекта ПС;

  • планирование методов и ресурсов реализации контрмер для сокращения опасных, приоритетных рисков проекта ПС;

  • распределение ресурсов на контрмеры для сбалансированного сокращения интегрального риска проекта ПС

Сокращение или ликвидация опасных рисков пс:

  • реализация контрмер для сокращения интегрального риска и составление отчетов о состоянии проекта;

  • корректировка требований к функциональной пригодности, конструктивным характеристикам и ресурсов проекта ПС;

  • регистрация результатов сокращения интегрального риска на очередном этапе проекта ПС

Контроль, регистрация, мониторинг и утверждение допустимого интегрального риска ПС:

  • контроль, отслеживание и мониторинг реализации сокращения интегрального риска по этапам проекта ПС;

  • документирование и утверждение допустимого интегрального риска по этапам жизненного цикла проекта ПС;

  • оформление итогового отчета по результатам сокращения рисков ПС

Рис. 10.3

277

  • в каждом классе предлагается анализировать несколько категорий наиболее важных рисков, которые упорядочивать по степени опасности, угроз для проекта, обусловленных ограничениями ресурсов, дефектами и/ или недостаточным качеством разработки и жизненного цикла ПС;

  • контрмеры для сокращения рисков рекомендуется анализировать и применять последовательно, начиная с ликвидации наиболее опасных исходных причин — угроз, затем проводить анализ и уменьшение уязвимости компонентов и ПС в целом, а при недостаточности этих контрмер воздействовать непосредственно на уменьшение итогового ущерба — риска в жизненном цикле ПС и системы;

  • процессы устранения рисков должны завершаться процедурами мониторинга, сопровождения и конфигурационного управления изменениями версий комплексов программ высокого качества с минимальными допустимыми рисками.

Таким образом, в жизненном цикле программных средств ущерб — риски могут проявляться — рис. 10.4:

Требования, угрозы и риски внешней среды Требования, угрозы и риски системы

+

Требования и угрозы к программному средству системы

* i *

I Риски реализации I I Риски реализации I I Риски выполнения

функциональной конструктивных ограничений ресурсов

I пригодности I I характеристик I проекта программного I

программного средства программного средства средства

j

Оценивание и упорядочивание приоритетов рисков проекта программного средства

Балансирование составляющих и сокращение

интегрального риска проекта программного

средства

Рис. 10.4 278

  • в искажениях или неполной реализации требуемого назначения, функций или взаимодействия ПС с компонентами системы или внешней среды — недостатками и дефектами функциональной пригодности комплексов программу

  • в недостаточных и не соответствующих требованиям конструктивных характеристиках качества ПС при его функционировании и применении по прямому назначению;

  • в нарушениях ограничений на использование экономических, временных или технических ресурсов при создании и применении ПС.

Анализ и оценка рисков должны начинаться с исследования понятий, требований и функций, способствующих одобрению и применению заказчиком и пользователями конкретного программного продукта. При этом должны быть определены требования к характеристикам ПС и оценки возможного ущерба при их нарушении. Исследования процессов разработки проектов ПС показали, что во многих случаях стоимость и длительность их реализации значительно превышали предполагаемые, а характеристики качества не соответствовали требуемым, что наносило ущерб заказчикам, пользователям и разработчикам. Эти потери — ущерб проектов, могли бы быть значительно сокращены своевременным анализом, прогнозированием и корректированием рисков возможного нарушения требований контрактов, технических заданий и спецификаций на характеристики, выделяемые ресурсы и технологию создания комплексов программ.

Управления рисками предполагает ясное понимание внутренних и внешних причин и реальных источников угроз, влияющих на качество проекта ПС, которые могут привести к его провалу или большому ущербу. В результате анализа следует создавать план отслеживания изменения рисков в жизненном цикле ПС, который должен регулярно рассматриваться и корректироваться. Главной целью управления рисками является обнаружение, идентификация и контроль за редко встречающимися ситуациями и факторами, которые приводят к негативным — рисковым результатам проекта. Это должно отражаться на применении регламентированных процессов, в которых факторы и угрозы рисков систематически идентифицируются, оцениваются и корректируются.

Одной из самых распространенных причин и опасных источников рисков являются ошибки при оценке масштаба размера проекта или

279

программного продукта (см. лекцию 5). Эти ошибки чаще всего бывают случайными — непредумышленными, вследствие недостаточной компетентности заказчика или разработчика-поставщика. Однако в некоторых случаях в превышении значения согласованного масштаба заказанного продукта могут быть заинтересованы разработчики для получения больших ресурсов от заказчика, а уменьшенную оценку масштаба могут стремиться представить заказчики для сокращения выделяемых затрат на разработку проекта или программного продукта. Величина оцененного и согласованного между заказчиком и разработчиком масштаба ПС непосредственно отражается на:

  • бюджете и трудоемкости разработки и обеспечения всего жизненного цикла программного продукта;

  • затратах времени и сроках создания и всего жизненного цикла реализации и применения ПС;

  • потребности в численности и квалификации специалистов-разработчиков для реализации проекта и создания программного продукта в соответствии с требованиями заказчика.

Эти три ключевые характеристики обычно тесно связаны и могут изменяться в процессах разработки проекта заказчиком или разработчиком в сторону увеличения или уменьшения в соответствии с их интересами, целями и возможностями. При стремлении заказчика сократить сроки реализации проекта может требоваться увеличить бюджет (трудоемкость) и численность специалистов. При объективно недостаточном числе и квалификации специалистов, естественно, возрастают сроки создания программного продукта и, возможно, бюджет проекта. Практически всегда основным фактором, определяющим значения и взаимосвязь этих важнейших характеристик и их рисков при создании сложных ПС является оценка и отслеживание масштаба проекта, а также его согласование между заказчиком и разработчиком.

Для снижения возможного ущерба — рисков применяются оценки, контроль и мониторинг рисков, а также различные контрмеры. Уменьшение рисков должно производиться путем максимально возможного приближения проекта к требованиям заказчика и к выделенным ресурсам или путем снижения этих требований и увеличения заказчиком ресурсов на проект ПС. В крупных проектах систем, использующих комплексы про-

280

грамм, риски могут быть обусловлены дефектами функциональных характеристик самих ПС и их жизненного цикла, а также недостатками систем и внешней среды, в которой они используются. Основной ущерб от рисков ПС проявляется в последствиях их применения — в дефектах и недостатках функционирования систем и внешней среды. Поэтому анализ и оценка рисков ПС должны быть тесно связаны с исследованием их проявления в системах, где они используются.

Риски ПС могут проявляться в процессах проектирования, разработки и сопровождения при изменении и развитии комплексов программ и при применении готового программного продукта по прямому назначению. Это приводит к необходимости анализа рисков функционирования ПС в условиях, различающихся:

  • источниками и причинами угроз и опасного проявления рисков;

  • классами, категориями, уязвимостью ПС и системы, вероятностью проявления и величиной последствий рисков;

  • возможными и реализуемыми контрмерами для сокращения рисков и их эффективностью.

Оценка и измерение рисков во многих случаях характеризуется значительной неопределенностью и применением качественных метрик. Факторы и угрозы рисков могут быть распределены, и отличаться уязвимостью по этапам жизненного цикла ПС и системы. При анализе и управлении рисками целесообразно выделять, прежде всего, наиболее характерные этапы ЖЦ ПС: технико-экономическое обоснование проекта ПС; разработку требований спецификаций; проектирование; кодирование; тестирование и документирование.

Неопределенность оценок масштаба комплексов и компонентов программ является одним из важнейших факторов, влияющим на риски всего жизненного цикла проекта ПС (см. лекцию 5). Точность оценки размера нового ПС значительно повышается после формулирования начальных требований и спецификаций заказчиков, проведения анализа требований после завершения разработки предварительного проекта. На этапе концепции проекта ошибки оценки размера ПС уменьшаются приблизительно до 40%. Это вполне объяснимо, поскольку еще не уточнены структура и многие детали проекта. Эти вопросы могут быть разрешены во время разработки структуры и спецификаций требований к ПС, и тогда можно оценить размер ПС с точностью до 15—20%.

281

Как только структура ПС будет разбита с учетом выделения самых нижних, доступных уровней компонентов, может быть создан более точный показатель размера комплекса программ. При этом используются процессы измерения и суммирования. После завершения разработки и подтверждения проектных спецификаций при детальном проектировании комплекса программ может быть определена структура внутренних данных и функции программных компонентов. На этом этапе оценка размера про-екта ПС может составить около 10%. Уточнения размеров ПС и компонентов могут быть решены к концу детального проектирования, однако при этом сохраняется неопределенность оценки размера комплекса программ около 5—10%, связанная с тем, насколько хорошо программисты понимают спецификации, в соответствии с которыми они должны кодировать программу.

В рассматриваемом ниже примере проекта ПС средние ошибки оценивания масштаба могут быть больше или меньше реальных значений, что по-разному отражается на характеристиках договора с заказчиком на проект, а также на факторах и типах рисков — рис. 10.5. Если масштаб проекта ПС в договорезавышен, то следствием могут быть, прежде всего, риски ущерб экономических категорий — превышения планируемых ресурсов: стоимости, трудоемкости, длительности разработки и числа необходимых специалистов. При этом заказчик терпит убытки, разработчик получает неоправданную прибыль. При реализации функциональной пригодности и конструктивных характеристик ПС разработчик может свободно использовать ресурсы и не предпринимать жестких мер для их экономии, что может отразиться на эффективности последующего применения комплекса программ.

Если при оценке масштаба проекта ПС его величина в договоре определена недостаточной заниженной, то основной ущерб — риски достаются разработчикам. Они вынуждены принимать жесткие меры для выполнения плановых сроков, выделенного бюджета работ при относительно малом числе специалистов, что угрожает рисками срыва сроков и нарушения стоимости проекта. Недооценка размера проекта комплекса программ и ресурсов для его реализации может резко увеличивать число дефектов в программах. Кроме того, ограниченные ресурсы для реализации в полном объеме функциональной пригодности могут отражаться на ее качестве и удобстве применения, а также на конструктивных характе-

282

ристиках: на безопасности, надежности, качестве взаимодействия с внешней средой и с пользователями, качестве документации и других эксплуатационных факторах.

10 дефекты, ошибки и риски в жизненном цикле программных средств10 дефекты, ошибки и риски в жизненном цикле программных средствОценки размера -

- масштаба проекта комплекса программ

Расчет исходных значений: трудоемкости, длительности и числа специалистов для реализации комплекса программ

10 дефекты, ошибки и риски в жизненном цикле программных средств10 дефекты, ошибки и риски в жизненном цикле программных средств10 дефекты, ошибки и риски в жизненном цикле программных средств10 дефекты, ошибки и риски в жизненном цикле программных средствОценки масштаба и исходные параметры в договоре завышены

Оценки масштаба и исходные параметры в договоре занижены

10 дефекты, ошибки и риски в жизненном цикле программных средств10 дефекты, ошибки и риски в жизненном цикле программных средств10 дефекты, ошибки и риски в жизненном цикле программных средств10 дефекты, ошибки и риски в жизненном цикле программных средствУщерб — риски заказчика; завышены параметры:

  • стоимость — трудоемкость;

  • сроки — длительность;

  • численность специалистов;

  • ресурсы для функциональной пригодности

Ущерб — риски разработчика; занижены параметры:

  • экономические, трудовые и временные ресурсы;

  • ресурсы для функциональной пригодности;

  • ресурсы для качества, безопасности, надежности.

  • Установлены допустимые риски,

  • исходный масштаб и параметры проекта

  • для разработки первичных спецификаций

  • требований

  • Корректировки масштаба и рисков

  • по этапам разработки проекта

  • и уточнение спецификаций требований

  • Рис. 10.5

  • Оценки масштаба проекта ПС и рисков должны быть проанализированы и скорректированы для установления в договоре между заказчиками и разработчиками исходного компромиссного масштаба, допустимого для разработки первичных спецификаций требований с требуемым качеством.

  • 283

  • Некоторые требования могут потребовать изменения (обычно увеличения) масштаба и соответственно ресурсов на этапах предварительного и детального проектирования для обеспечения возможности реализации требуемой функциональной пригодности с допустимыми рисками.

  • 10.4. Риски при формировании требований к характеристикам сложных программных средств

  • Для продолжения разработки проекта после оценки рисков масштаба комплекса программ необходимо выполнить цикл поэтапного определения и формирования совокупности спецификаций требований к проекту ПС. Первым этапом является создание концепции проекта ПС и комплекса первичных требований к иерархическому набору функций, на которые могут быть разбиты предполагаемые фактические компоненты ПС. В дальнейшем разбиение может детализироваться, формируя упрощенный или более точный уровень абстракции и взаимодействия компонентов. Поэтапная разработка спецификаций требований проекта ПС выполняется итерационно после первичной оценки масштаба проекта ПС и обусловленных такими оценками рисков, вследствие ошибок размера в большую или меньшую сторону (см. рис. 10.5). Ограничения при прогнозировании требований определяются, прежде всего, имеющимися данными, которые могут быть использованы в качестве исходных аналогов или обобщенных характеристик.

  • Для устранения или снижения рисков до допустимых пределов может быть необходимо изменение требований к функциональной пригодности, к конструктивным характеристикам и доступным ресурсам. Поэтому на этапах проектирования последовательно должны определяться:

  • при проектировании концепции и первичной оценке масштаба проекта — предварительные требования к назначению, функциональной пригодности и к номенклатуре необходимых конструктивных характеристик качества ПС;

  • при предварительном проектировании — уточненная оценка масштаба проекта, требования к функциональным и конструктивным характеристикам качества с учетом общих ограничений ресурсов, перечень источников угроз и величины возможных рисков;

  • 284

  • — при детальном проектировании — подробные спецификации требований к функциональным и конструктивным характеристикам качества с детальным учетом и распределением реальных

продолжение следует...

Продолжение:


Часть 1 10 дефекты, ошибки и риски в жизненном цикле программных средств
Часть 2 Сокращение или ликвидация опасных рисков пс: - 10 дефекты, ошибки
Часть 3 - 10 дефекты, ошибки и риски в жизненном цикле программных

Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.

создано: 2018-11-23
обновлено: 2021-03-13
132265



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей



Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Качество и тестирование программного обеспечения. Quality Assurance.

Термины: Качество и тестирование программного обеспечения. Quality Assurance.