Лекция
Game: Perform tasks and rest cool.11 people play!
Play gameПривет, Вы узнаете о том , что такое математическая логика, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое математическая логика, теоретическая логика, символическая логика, теория рекурсий, теория моделей , настоятельно рекомендую прочитать все из категории введение в математику. основы.
Математи́ческая ло́гика ( теоретическая логика , символическая логика , устар. логи́стика ) — раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики .
В более широком смысле рассматривается как математизированная ветвь формальной логики — «логика по предмету, математика по методу» , «логика, развиваемая с помощью математических методов»[.
Первые попытки математизации логических операций были предприняты на рубеже XIII—XIV вв., Раймундом Луллием, сконструировавшим специальную «логическую машину» для механизации процесса логического вывода, которую он описал в своем трактате «Ars Magna» («Великое искусство»). Его машина состояла из семи концентрических кругов, на которых были обозначены термины и буквы. Для получения комбинаций Луллий использовал два концентрических круга, разделенных радиальными линиями на секторы. Вращая внутренний круг он получал таблицу различных комбинаций. Конечно эта попытка была несовершенной, но сыграла свою роль в дальнейшем развитии идеи математизации логических выводов.
Первое дошедшее до нас сочинение по формальной логике — «Первая Аналитика» Аристотеля (384—322 гг. до нашей эры). В нем рассматриваются основы силлогистики — правила вывода одних высказываний из других. Так из высказываний «Все люди смертны» и «Сократ — человек» можно сделать вывод, что «Сократ смертен». Однако на практике такие рассуждения встречаются крайне редко.
Вопрос о создании символической логики как универсального научного языка рассматривал Лейбниц в 1666 году в работе «Искусство комбинаторики» (De arte combinatoria). Он думал о записи высказываний на специальном языке, чтобы затем по логическим законам вычислять истинность других. В середине XIX века появились первые работы по алгебраизации аристотелевой логики, сформировавшие первооснову исчисления высказываний (Буль, де Морган, Шредер). В 1847 г. Дж. Буль опубликовал работу «The Mathematical Analysis of Logic» («Математический анализ логики»), а в 1854 г.— «An Investigation of the Laws of Thought» «Исследование законов мышления»). В них Буль изложил основы своей алгебры логики, где применил алгебраическую символику для записи логических операций и логических выводов. Булева алгебра логики в виде исчисления классов явилась первой системой математической логики. Основным результатом Булевой алгебры отмечается то, что теперь не ограничиваются применением символики к логике, а строят специальные логические исчисления; логические законы выступают в алгебре логики как необходимый момент формализованных систем; всякое суждение рассматривается как утверждение о равенстве классов; процесс умозаключения сводится к решению логических равенств. Однако, как отмечал Джевонс, операция вычитания в этой алгебре логики была не совсем удобной и иногда приводила к недоразумениям. Алгебру логики Буля усовершенствовали У. С. Джевонс и Э. Шредер. Сам Джевонс в книге «Чистая логика» критиковал излишнюю математизацию, алгебры логики Буля и предложил свою теорию, основанную на принципе замещения, то есть замене равного равным.
Game: Perform tasks and rest cool.11 people play!
Play gameGame: Perform tasks and rest cool.11 people play!
Play gameВ конце 1880-х годов Дедекинд и Пеано применили эти инструменты в попытках аксиоматизации арифметики, при этом Пеано создал удобную систему обозначений, закрепившуюся и в современной математической логике. Он ввел в математическую логику символы: ∈ — знак принадлежности множеству, ⊂ — знак включения, ⋃ — знак объединения, ∩ — знак пересечения множеств; разработал систему аксиом для арифметики натуральных чисел. Но главное, Пеано с помощью изобретенного им символического исчисления попытался исследовать основные математические понятия, что стало первым шагом практического применения математической логики к изучению основ математики. В своем пятитомном труде «Formulaire de Mathematiques» (1895—1905) Пеано показал, как с помощью символического исчисления можно аксиоматически построить математические дисциплины.
Уайтхед и Рассел создают в 1910—1913 годах трактат Principia Mathematica. Этот труд значительно способствовал развитию математической логики по пути дальнейшей аксиоматизации и формализации исчисления высказываний, классов и предикатов. Б. Рассел и А. Уайтхед выход из кризиса, в котором оказалась математика в связи с обнаружением парадоксов в теории множеств, видели в том, чтобы свести всю чистую математику к логике. Это была концепция логицизма. С этой целью они построили формализованную логико-математическую систему, в которой, по их утверждению, могут быть доказаны все содержательно истинные предложения. Но вскоре стало понятно, что попытка Б. Рассела и А. Уайтхеда свести всю чистую математику к логике не увенчалась успехом. В 1930—1931 годах К. Гедель установил, что не только разработанная Б. Расселом и А. Уайтхедом система, но и любая система формализованной математики является неполной, то есть не все содержательно истинные предложения могут быть в ней доказаны.
Свой выход из кризиса математики и дальнейшее развитии логики внесла концепция интуиционизма и интуиционистская логика (Брауэр, 1908). Математика, говорили они, это — математические конструкции. Математический объект существует, если известно, как его строить. Математик имеет дело с миром мысленных объектов, некоторые из них можно создать только в пределе за неограниченную последовательность шагов, никогда не завершающуюся и находящуюся в процессе постоянного становления. С точки зрения интуиционизма понятие актуальной, существующей бесконечности, которого придерживались представители теоретико-множественной концепции математики, является ошибочным. Об этом говорит сайт https://intellect.icu . Поэтому интуиционистская логика исследует только конструктивные объекты, существование таких объектов считается доказанным в том и только в том случае, когда указывается конечный способ их построения. В этой логике отрицается применимость закона исключенного третьего в операциях с бесконечными множествами. Возникшая позднее конструктивная логика критически восприняла объективное содержание интуиционистской логики, и не приняла ее философско-методических основ.
Большую роль в развитии математической логики сыграла работа Гильберта и В. Аккермана «Основные черты теоретической логики» (1928 г.), изданная в России на русском языке под названием «Основы теоретической логики» в 1947 году, в которой была создана программа обоснования математики посредством аксиоматической формализации с использованием строго ограниченных средств, не приводящих к противоречиям. В своей работе они высказались о новом в математической логике: «Логические связи, которые существуют между суждениями, понятиями и т. д. — писали они, — находят свое выражение в формулах, толкование которых свободно от неясностей, какие легко могли бы возникнуть при словесном выражении. Переход к логическим следствиям, совершающийся посредством умозаключения, разлагается на свои последние элементы и представляется как формальное преобразование исходных формул по известным правилам, которые аналогичны правилам счета в алгебре; логическое мышление отображается в логическом исчислении. Это исчисление делает возможным успешный охват проблем, перед которыми принципиально бессильно чисто содержательное логическое мышление». Гильберт выступал против интуиционизма. Он возражал против того, что интуиционисты отрицали закон исключенного третьего в операциях с множествами. «Запрещение теорем существования и закона исключенного третьего — писал он, — равносильно полному отказу от математической науки». В своем методе формализации Гильберт предложил превратить всю математику в совокупность формул, в которых элементы связаны с помощью логических знаков. В фундаменте построения математики заложены некоторые определенные формулы, которые называются аксиомами. В качестве таких аксиом Гильберт взял аксиомы исчисления высказываний математической логики, математические аксиомы равенства и аксиомы числа, из которых он с помощью правил вывода получил новые, выводимые аксиомы. Вывод получался только на основании формы символов и знаков, за которыми не стояло никакого содержания. Формализованная теория по своей структуре представляла уже не систему осмысленных предложений, а систему символов, рассматриваемых как последовательность терминов. Основное требование, которое Гильберт предъявлял при определении понятия «существование» математического объекта сводилось к доказательству его непротиворечивости. Если в той или иной системе окажется, что в ней выводимо А и не-А, то такая система должна быть отвергнута. Гильберт и его школа пытались обосновать математику только аксиоматически, не выходя за пределы логики и математики.
Game: Perform tasks and rest cool.11 people play!
Play gameGame: Perform tasks and rest cool.11 people play!
Play game
Математическая логика, так же как и традиционная логика, формальная в том смысле, что она абстрагируется от значения и судит о взаимосвязи, отношениях и переходах от одного предложения (высказывания) к другому и получающемся в итоге выводе из этих предложений не на основании содержания их, а только на основании формы последовательности предложений.
Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном языке. Такие точные языки имеют две стороны: синтаксис и семантику. Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие — нет.
Важную роль в математической логике играют понятия дедуктивной теории и исчисления. Исчислением называется совокупность правил вывода, позволяющих считать некоторые формулы выводимыми. Правила вывода подразделяются на два класса. Одни из них непосредственно квалифицируют некоторые формулы как выводимые. Такие правила вывода принято называть аксиомами. Другие же позволяют считать выводимыми формулы A , синтаксически связанные некоторым заранее определенным способом с конечными наборами A1,…An выводимых формул. Широко применяемым правилом второго типа является правило modus ponens: если выводимы формулы A и (A→B) , то выводима и формула B .
Отношение исчислений к семантике выражается понятиями семантической пригодности и семантической полноты исчисления. Исчисление И называется семантически пригодным для языка Я , если любая выводимая в И формула языка Я является верной. Аналогично, исчисление И называется семантически полным в языке Я , если любая верная формула языка Я выводима в И .
Многие из рассматриваемых в математической логике языков обладают семантически полными и семантически пригодными исчислениями. В частности, известен результат Курта Геделя о том, что классическое исчисление предикатов является семантически полным и семантически пригодным для языка классической логики предикатов первого порядка (теорема Геделя о полноте). С другой стороны, имеется немало языков, для которых построение семантически полного и семантически пригодного исчисления невозможно. В этой области классическим результатом является теорема Геделя о неполноте, утверждающая невозможность семантически полного и семантически пригодного исчисления для языка формальной арифметики. С другой стороны в 1936 году Герхард Генцен доказал полноту и непротиворечивость арифметики, используя примитивно рекурсивную арифметику с дополнительной аксиомой для трансфинитной индукции до ординала ε0.
На практике множество элементарных логических операций является обязательной частью набора инструкций всех современных микропроцессоров и, соответственно, входит в языки программирования. Это является одним из важнейших практических приложений методов математической логики, изучаемых в современных учебниках информатики.
В Математической предметной классификации математическая логика объединена в одну секцию верхнего уровня с основаниями математики, в которой выделены следующие разделы:
Game: Perform tasks and rest cool.11 people play!
Play gameGame: Perform tasks and rest cool.11 people play!
Play gameДва известных утверждения в теории множеств — аксиома выбора и гипотеза континуума . Аксиома выбора, впервые сформулированная Цермело [ 19 ], была доказана независимо от ZF Френкелем [ 25 ] , но стала широко принятой математиками. Она гласит, что для данного набора непустых множеств существует единственное множество C , которое содержит ровно один элемент из каждого набора в наборе. Говорят, что множество C «выбирает» один элемент из каждого набора в наборе. Хотя возможность сделать такой выбор некоторые считают очевидной, поскольку каждое множество в наборе непусто, отсутствие общего, конкретного правила, по которому можно сделать выбор, делает аксиому неконструктивной. Стефан Банах и Альфред Тарский показали, что аксиому выбора можно использовать для разложения сплошного шара на конечное число частей, которые затем можно переставить без масштабирования, чтобы сделать два сплошных шара исходного размера. [ 40 ] Эта теорема, известная как парадокс Банаха-Тарского , является одним из многих контринтуитивных результатов аксиомы выбора.
Гипотеза континуума, впервые предложенная как гипотеза Кантором, была указана Дэвидом Гильбертом как одна из его 23 проблем в 1900 году. Гедель показал, что гипотеза континуума не может быть опровергнута из аксиом теории множеств Цермело–Френкеля (с аксиомой выбора или без нее), путем разработки конструируемой вселенной теории множеств, в которой гипотеза континуума должна быть верна. В 1963 году Пол Коэн показал, что гипотеза континуума не может быть доказана из аксиом теории множеств Цермело–Френкеля. [ 26 ] Однако этот результат о независимости не полностью разрешил вопрос Гильберта, поскольку возможно, что новые аксиомы для теории множеств могли бы разрешить гипотезу. Недавняя работа в этом направлении была проведена У. Хью Вудином , хотя ее важность пока не ясна. [ 41 ]
Современные исследования в теории множеств включают изучение больших кардиналов и определенности . Большие кардиналы — это кардинальные числа с особыми свойствами, настолько сильными, что существование таких кардиналов не может быть доказано в ZFC. Существование наименьшего большого кардинала, обычно изучаемого, недостижимого кардинала , уже подразумевает согласованность ZFC. Несмотря на то, что большие кардиналы имеют чрезвычайно высокую мощность , их существование имеет много последствий для структуры действительной линии. Определенность относится к возможному существованию выигрышных стратегий для определенных игр двух игроков (игры считаются определенными ). Существование этих стратегий подразумевает структурные свойства действительной линии и других польских пространств .
Теория моделей изучает модели различных формальных теорий. Здесь теория — это набор формул в определенной формальной логике и сигнатуре , тогда как модель — это структура, которая дает конкретную интерпретацию теории. Теория моделей тесно связана с универсальной алгеброй и алгебраической геометрией , хотя методы теории моделей больше сосредоточены на логических соображениях, чем на этих областях.
Совокупность всех моделей конкретной теории называется элементарным классом ; классическая теория моделей стремится определить свойства моделей в конкретном элементарном классе или определить, образуют ли определенные классы структур элементарные классы.
Метод исключения кванторов может быть использован для того, чтобы показать, что определимые множества в конкретных теориях не могут быть слишком сложными. Тарский установил исключение кванторов для вещественно-замкнутых полей , результат, который также показывает, что теория поля вещественных чисел разрешима Он также отметил, что его методы в равной степени применимы к алгебраически замкнутым полям произвольной характеристики. Современная подобласть, развивающаяся из этого, занимается o-минимальными структурами .
Теорема Морли о категоричности , доказанная Майклом Д. Морли , утверждает, что если теория первого порядка в счетном языке категорична в некоторой несчетной мощности, т. е. все модели этой мощности изоморфны, то она категорична во всех несчетных мощностях.
Тривиальным следствием гипотезы континуума является то, что полная теория с меньшим, чем континуум, числом неизоморфных счетных моделей может иметь только счетное число. Гипотеза Воота , названная в честь Роберта Лоусона Воота , утверждает, что это верно даже независимо от гипотезы континуума. Было установлено много частных случаев этой гипотезы.
Теория рекурсии , также называемая теорией вычислимости , изучает свойства вычислимых функций и степеней Тьюринга , которые делят невычислимые функции на множества, имеющие одинаковый уровень невычислимости. Теория рекурсии также включает изучение обобщенной вычислимости и определимости. Теория рекурсии выросла из работы Рожи Петера , Алонзо Черча и Алана Тьюринга в 1930-х годах, которая была значительно расширена Клини и Постом в 1940-х годах. [ 44 ]
Game: Perform tasks and rest cool.11 people play!
Play gameGame: Perform tasks and rest cool.11 people play!
Play gameСовременные исследования в области теории рекурсии включают изучение таких приложений, как алгоритмическая случайность , теория вычислимых моделей и обратная математика , а также новых результатов в чистой теории рекурсии.
Важная подобласть теории рекурсии изучает алгоритмическую неразрешимость; проблема принятия решений или проблема функций алгоритмически неразрешима , если не существует возможного вычислимого алгоритма, который возвращает правильный ответ для всех допустимых входных данных задачи. Первые результаты о неразрешимости, полученные независимо Черчем и Тьюрингом в 1936 году, показали, что Entscheidungsproblem алгоритмически неразрешима. Тьюринг доказал это, установив неразрешимость проблемы остановки , что имело далеко идущие последствия как для теории рекурсии, так и для компьютерной науки.
Существует множество известных примеров неразрешимых проблем из обычной математики. Алгоритмическая неразрешимость проблемы поиска слов для групп была доказана Петром Новиковым в 1955 году и независимо У. Буном в 1959 году. Задача о занятом бобре , разработанная Тибором Радо в 1962 году, является еще одним известным примером.
Десятая проблема Гильберта требовала алгоритма для определения того, имеет ли многомерное полиномиальное уравнение с целыми коэффициентами решение в целых числах. Частичный прогресс был достигнут Джулией Робинсон , Мартином Дэвисом и Хилари Патнэмом . Алгоритмическая неразрешимость проблемы была доказана Юрием Матиясевичем в 1970 году
Теория доказательств — это изучение формальных доказательств в различных системах логического вывода. Эти доказательства представляются как формальные математические объекты, что облегчает их анализ математическими методами. Обычно рассматриваются несколько систем вывода, включая системы вывода в стиле Гильберта , системы естественного вывода и секвенциальное исчисление , разработанное Генценом.
Изучение конструктивной математики в контексте математической логики включает изучение систем неклассической логики, таких как интуиционистская логика, а также изучение предикативных систем. Одним из первых сторонников предикативизма был Герман Вейль , который показал, что можно развить большую часть реального анализа, используя только предикативные методы. [ 46 ]
Поскольку доказательства полностью конечны, тогда как истина в структуре не является таковой, в конструктивной математике принято подчеркивать доказуемость. Связь между доказуемостью в классических (или неконструктивных) системах и доказуемостью в интуиционистских (или конструктивных, соответственно) системах представляет особый интерес. Такие результаты, как отрицательный перевод Геделя–Гентцена, показывают, что можно встроить (или перевести ) классическую логику в интуиционистскую логику, что позволяет перенести некоторые свойства интуиционистских доказательств обратно в классические доказательства.
Последние разработки в теории доказательств включают исследование добычи доказательств Ульрихом Коленбахом и исследование ординалов теории доказательств Михаэлем Ратьеном .
Изучение теории вычислимости в информатике тесно связано с изучением вычислимости в математической логике. Однако есть разница в акцентах. Специалисты по информатике часто фокусируются на конкретных языках программирования и возможной вычислимости , в то время как исследователи в математической логике часто фокусируются на вычислимости как теоретической концепции и на невычислимости.
Теория семантики языков программирования связана с теорией моделей , как и верификация программ (в частности, проверка моделей ). Соответствие Карри–Ховарда между доказательствами и программами связано с теорией доказательств , особенно с интуиционистской логикой . Формальные исчисления, такие как лямбда-исчисление и комбинаторная логика, в настоящее время изучаются как идеализированные языки программирования .
Информатика также вносит вклад в математику, разрабатывая методы автоматической проверки или даже поиска доказательств, такие как автоматизированное доказательство теорем и логическое программирование .
Game: Perform tasks and rest cool.11 people play!
Play gameGame: Perform tasks and rest cool.11 people play!
Play gameИсследование, описанное в статье про математическая логика, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое математическая логика, теоретическая логика, символическая логика, теория рекурсий, теория моделей и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории введение в математику. основы
Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.
Комментарии
Оставить комментарий
введение в математику. основы
Термины: введение в математику. основы