Лекция
Привет, сегодня поговорим про литий-ионный аккумулятор, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое литий-ионный аккумулятор , настоятельно рекомендую прочитать все из категории Источники питания радиоэлектронной аппаратуры.
Литий-ионный аккумулятор (Li-ion) — тип электрического аккумулятора, который широко распространен в современной бытовой электронной технике и находит свое применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны,ноутбуки, электромобили, цифровые фотоаппараты и видеокамеры. Первый литий-ионный аккумулятор выпустила корпорация Sony в 1991 году.
Характеристики литий-ионных аккумуляторов зависят от химического состава составляющих компонентов и варьируются в следующих пределах:
Зарядные устройства поддерживают конечное напряжение в диапазоне 4.05-4.2 В.
Литиевые аккумуляторы имеют специальные требования при подключении нескольких банок последовательно. Зарядные устройства для таких многобаночных аккумуляторов снабжаются схемой балансировки ячеек. Смысл балансировки в том что банки немного разные, и какая-то достигнет полного заряда раньше других. При этом необходимо прекратить заряд этой банки , продолжая заряжать остальные. Эту функцию выполняет специальный узел балансировки аккумулятора. Он шунтируетзаряженную банку так, чтобы ток заряда шел мимо нее.
Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделенных пропитанными электролитом пористыми сепараторами. Пакет электродов помещен в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъемникам. Корпус имеет предохранительный клапан, сбрасывающий внутреннее давление при аварийных ситуациях и нарушении условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решетку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC6, окислы (LiMO2) и соли (LiMRON) металлов.
Первоначально в качестве отрицательных пластин применялся металлический литий, затем - каменноугольный кокс. В дальнейшем стал применяться графит. Применение оксидов кобальта позволяет аккумуляторам работать на значительно более низких температурах, повышает количество циклов разряда/заряда одного аккумулятора. Распространение литий-феррум-фосфатных аккумуляторов обусловлено их относительно низкой стоимостью. Литий-ионные аккумуляторы применяются в комплекте с системой контроля и управления - СКУ или BMS (battery management system) и специальным устройством заряда/разряда.
В настоящее время в массовом производстве литий-ионных аккумуляторов используются три класса катодных материалов:
Электро-химические схемы литий-ионных аккумуляторов:
Благодаря низкому саморазряду и большому количеству циклов заряда-разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом помимо системы BMS (СКУ) они укомплектовываются инверторами (преобразователи напряжения ).
Потеря емкости при хранении[1]:
Температура, ⁰C | С 40 % зарядом, % за год | Со 100 % зарядом, % за год |
---|---|---|
0 | 2 | 6 |
25 | 4 | 20 |
40 | 15 | 35 |
60 | 25 | 40 % за три месяца |
Согласно всем действующим регламентам хранения и эксплуатации литий-ионных аккумуляторов, для обеспечения длительного хранения необходимо подзаряжать их до уровня 70 % емкости 1 раз в 6–9 месяцев.
По результатам исследований ученых Института Пауля Шерера (Швейцария) было обнаружено, что литий-ионные аккумуляторы имеют эффект памяти[2]. Что в итоге лишило данный тип аккумуляторов одного из основных достоинств, но в то же время, это позволяет действительно понять механизмы работы аккумуляторов и решить некоторые проблемы с их емкостью и долговечностью[3].
Исследователи из швейцарского Института Пола Шеррера вместе с коллегами из Toyota Research в Японии обнаружили, что широко используемый тип литий-ионных аккумуляторов все-таки подвержен негативному «эффекту памяти».
Как показало исследование, частые циклы неполной зарядки и последующего разряда приводят к возникновению отдельных «микроэффектов памяти», которые затем суммируются. Это происходит потому, что основой работы батареи являются процессы высвобождения и обратного захвата ионов лития, динамика которых становится далека от оптимальной в случае неполной зарядки.
Во время процесса заряда ионы лития один за другим покидают частицы литий-феррофосфата, размер которых составляет десятки микрометров. Катодный материал начинает разделяться на частицы с разным содержанием лития.
Заряд батареи происходит на фоне возрастания электрохимического потенциала. В определенный момент он достигает предельного значения. Это приводит к ускорению высвобождения оставшихся ионов лития из катодного материала, но они уже не меняют суммарное напряжение батареи.
Если она не будет полностью заряжена, то на катоде останется некоторое число частиц, близких к пограничному состоянию. Они практически достигли барьера высвобождения ионов лития, но не успели его преодолеть.
При разряде свободные ионы лития стремятся вернуться на место и рекомбинировать с ионами феррофосфата. Однако на поверхности катода их также встречают частицы в пограничном состоянии, уже содержащие литий. Обратный захват затрудняется, и нарушается микроструктура электрода.
В настоящее время просматриваются два пути решения проблемы: внесение изменений в алгоритмы работы системы управления батареями и разработка катодов с увеличенной площадью поверхности.
Температурный режим заряда литий-полимерных и литий-ионных аккумуляторов влияет на их емкость: емкость снижается при зарядке на холоде или в жару. Глубокий разряд полностью выводит из строя литий-ионный аккумулятор. Также на жизненный цикл аккумуляторов влияет глубина его разряда перед очередной зарядкой и зарядка токами выше регламентируемых производителем. Крайне чувствительны они и к напряжению заряда. Если его повысить всего на 4%, то аккумуляторы будут вдвое быстрее терять емкость от цикла к циклу. Оптимальные условия хранения Li-ion-аккумуляторов достигаются при 40-процентном заряде от емкости аккумулятора и температуре 0…10 °C. Литиевые аккумуляторы стареют, даже если не используются. Через 2 года батарея теряет около 20 % емкости. Соответственно, нет необходимости покупать аккумулятор «про запас» или чрезмерно увлекаться «экономией» его ресурса. При покупке обязательно посмотрите на дату производства, чтобы знать, сколько данный источник питания уже пролежал на складе. В случае, если с момента изготовления прошло более двух лет, лучше воздержитесь от покупки.
К сожалению, в одной статье не просто дать все знания про литий-ионный аккумулятор. Но я - старался. Если ты проявишь интерес к раскрытию подробностей,я обязательно напишу продолжение! Надеюсь, что теперь ты понял что такое литий-ионный аккумулятор и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Источники питания радиоэлектронной аппаратуры
Из статьи мы узнали кратко, но содержательно про литий-ионный аккумулятор
Комментарии
Оставить комментарий
Источники питания радиоэлектронной аппаратуры
Термины: Источники питания радиоэлектронной аппаратуры