Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Лекция



Привет, Вы узнаете о том , что такое выпрямительный диод, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое выпрямительный диод, типы выпрямителей переменного тока, выпрямители, диоды с барьером шоттки, диоды шоттки, выпрямительные диоды, выпрямительный диод , настоятельно рекомендую прочитать все из категории Источники питания радиоэлектронной аппаратуры.

Еще в начале ХХ века имел место очень принципиальный спор между ученными. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всем мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

выпрямительные диоды — диоды, используемые для преобразования переменного тока в постоянный. На смену электровакуумным диодам и игнитронам пришли диоды из полупроводниковых материалов и диодные мосты (четыре диода в одном корпусе). Обычно к быстродействию, емкости p-n перехода и стабильности параметров выпрямительных диодов не предъявляют специальных требований .

Основные параметры выпрямительных диодов:

  • среднее прямое напряжение Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов при указанном токе Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов;
  • средний обратный ток Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов при заданных значениях обратного напряжения Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов и температуры;
  • допустимое амплитудное значение обратного напряжения Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов;
  • средний прямой ток Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов;
  • частота без снижения режимов.

Частотный диапазон выпрямительных диодов невелик. При преобразовании промышленного переменного тока рабочая частота составляет 50 Гц, предельная частота выпрямительных диодов не превышает 20 кГц.

По максимально допустимому среднему прямому току диоды делятся на три группы: диоды малой мощности (Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов ≤ 0,3 А), диоды средней мощности (0,3 А < Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов < 10 А) и мощные (силовые) диоды (Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов ≥ 10 А). Диоды средней и большой мощности требуют отвода тепла, поэтому они имеют конструктивные элементы для установки на радиатор.

В состав параметров диодов входят диапазон температур окружающей среды (для кремниевых диодов обычно от −60 до +125 °С) и максимальная температура корпуса.

Среди выпрямительных диодов следует особо выделить диоды Шотки, создаваемые на базе контакта металл-полупроводник и отличающиеся более высокой рабочей частотой (для 1 МГц и более), низким прямым падением напряжения (менее 0,6 В).

[[s|rectify.txt]]

Мостовая схема включения диодов

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов
Схема диодного моста.

Для повышения коэффициента полезного действия выпрямительные диоды включают по мостовой (реже полумостовой) схеме, чтобы питание нагрузки осуществлялось на протяжении обоих полупериодов.

Однополупериодный выпрямитель.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подается на один единственный диод. Вот схема.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети - 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 - 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина емкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нем применяется однополупериодная схема, причем как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Об этом говорит сайт https://intellect.icu . Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Как видим, на выходе выпрямителя уже в два раза меньше "провалов" напряжения - тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов - общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Можно без преувеличения сказать, что это самая распространенная схема. На практике вы с ней еще не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop - VF). Для обычных выпрямительных диодов оно может быть 1 - 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды шоттки , у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочередном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но ее можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придется наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор - смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

На рисунке изображен четырехзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трехфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трехфазного тока, называются трехфазными выпрямителями. Трехфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трехфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трехфазного трансформатора. Схема.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой емкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трехфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трехфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трехфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгами по электронике

Особенности выбора выпрямительных диодов

При выборе диодов выпрямителя необходимо учитывать целый набор факторов, определяемых: принципиальной схемой выпрямителя, частотой и величиной входного переменного напряжения, величинами напряжения и тока нагрузки, условиями эксплуатации (температура, влажность, устойчивость входного напряжения и т.п.), характером нагрузки (емкостная, индуктивная), наличием коммутационных перегрузок в цепи нагрузки, параметрами применяемого трансформатора и т.д.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

рис основне параметры выпрямительных диодов

В первую очередь необходимо рассчитать значение максимального обратного напряжения, прикладываемого к силовым диодам при работе выпрямителя выбранного типа, а также оценить среднее значение протекающего через них прямого тока (это можно сделать по приближенным формулам, приводимым в таб. 3.4-1). Полученные таким образом значения необходимо откорректировать в зависимости от характера нагрузки.

Таб. 3.4-1. Режимы работы диодов в различных выпрямителях

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

При наличии активно-емкостной нагрузки (а это чаще всего именно так) амплитудное и действующее значения тока силовых диодов могут существенно превышать его расчетное среднее значение. Так, например, при допустимом уровне пульсаций на выходе порядка 0,1% в однофазном мостовом выпрямителе с емкостным фильтром амплитудное значение тока выпрямительных диодов может достигать 15⋅Iпрсрmax15⋅Iпрсрmax . В целях исключения перегрузки диодов по величине действующего и амплитудного значений токов и их перегрева, необходимо ужесточить требования к максимальному прямому среднему току (IпрсрmaxIпрсрmax) применяемых диодов. Практически, для однополупериодного выпрямителя используется коэффициент 2,2, а для двухполупериодного 1,1 (т.е. используемые диоды должны иметь значение IпрсрmaxIпрсрmax как минимум в 1,1 раза большее, чем это следует из значений, полученных по формулам из таб. 3.4-1).

Величина максимально допустимого повторяющегося обратного напряжения (UобрипmaxUобрипmax) используемых диодов также подвержена влиянию нагрузки (характер этого влияния может быть вычислен по формулам, приводимым далее). Во избежание ее превышения в начальный момент времени после включения выпрямителя и во время его работы (в т.ч. и на холостом ходу), силовые диоды должны выбираться с некоторым запасом и по этому параметру.

Опираясь на найденные значения IпрсрmaxIпрсрmax и UобрипmaxUобрипmax (не забывая также о предполагаемой частоте входного переменного напряжения), по таблицам справочных данных производят предварительный выбор силовых диодов. Немаловажное значение для характеристик выпрямителя имеет тип выбранных выпрямительных диодов. Напомним, что в качестве выпрямительных могут использоваться кремниевые, германиевые или арсенид-галлиевые диоды с pp‑nn‑переходом (в т.ч. лавинные диоды), а также кремниевые или арсенид-галлиевые диоды с переходом Шоттки.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Германиевые выпрямительные диоды довольно широко использовались 10..20 лет назад. В настоящее время они практически полностью вытеснены более совершенными кремниевыми и арсенид-галиевыми приборами. И только в некоторых довольно редких случаях немногие положительные свойства германиевых диодов могут обусловить их применение в выпрямителях. Основными свойствами германиевых диодов с pp-nn-переходом являются:

  • низкое прямое падение напряжения (на германиевом диоде при максимально допустимом прямом токе падение напряжения приблизительно в два раза меньше, чем на аналогичном кремниевом диоде), что является существенным, но, к сожалению, единственным преимуществом перед кремниевыми выпрямительными диодами;
  • существование явно выраженного тока насыщения при обратном включении диода;
  • значительно большая величина обратного тока по сравнению с аналогичными кремниевыми диодами;
  • пробивное напряжение уменьшается с ростом температуры (большие обратные токи германиевых диодов являются причиной теплового характера их пробоя), а значение этого напряжения меньше пробивных напряжений кремниевых диодов.
  • верхний предел диапазона рабочих температур германиевых диодов составляет приблизительно 75 °C, что значительно ниже по сравнению с тем же параметром кремниевых диодов.

Существенным недостатком германиевых диодов является то, что они плохо выдерживают даже кратковременные импульсные перегрузки по обратному напряжению. Определяется это механизмом пробоя германиевых диодов — тепловым пробоем, происходящим при шнуровании тока с выделением большой удельной мощности в месте пробоя.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Кремниевые выпрямительные диоды с pp-nn-переходом — это наиболее распространенный в настоящее время вид диодов, применяемых во всех классах выпрямителей (однако они постепенно вытесняются более эффективными диодами с переходом Шоттки). Их основные свойства:

  • максимально допустимые прямые токи кремниевых диодов различных типов составляют 0,1...1600 А, падение напряжения на диодах при этих токах не превышает обычно 1,5 В;
  • с увеличением температуры прямое падение напряжения уменьшается;
  • обратная ветвь ВАХ кремниевых диодов не имеет ярко выраженного участка насыщения;
  • пробой кремниевых диодов имеет лавинный характер, поэтому пробивное напряжение с увеличением температуры увеличивается (для некоторых типов кремниевых диодов при комнатной температуре пробивное напряжение может составлять 1500...2000 В);
  • диапазон рабочих температур для кремниевых выпрямительных диодов ограничен значениями –60...+125 °C.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Лавинный характер пробоя кремниевых диодов позволил создать такие приборы, которые безболезненно переносят многократные перегрузки по обратному напряжению — лавинные диоды. Если условия эксплуатации разрабатываемого выпрямителя очень тяжелы с точки зрения стабильности питающего напряжения или тока нагрузки (что возможно при коммутации различных емкостей и индуктивностей в цепях нагрузки), то применение лавинных диодов становится практически неизбежным. Они обеспечивают гашение кратковременных импульсов высокого напряжения, проникающих в выпрямитель из внешних цепей. Альтернативой использованию лавинных диодов может быть добавление в выпрямитель стабилитрона или ограничителя напряжения (см. раздел “Диоды в ограничителях напряжения”).

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Выпрямительные диоды, изготовленные из материала с большой шириной запрещенной зоны, обладают существенными преимуществами в свойствах и параметрах. С этой точки зрения, относительно недавно появившиеся выпрямительные диоды с pp-nn-переходом из арсенида галлия являются очень перспективными приборами. Параметры выпускаемых арсенид-галлиевых выпрямительных диодов пока еще далеки от теоретически возможных (например, для диодов типа АД112 максимально допустимый прямой ток равен всего 300 мА, а максимально допустимое обратное напряжение — 50 В), поэтому очевидно, что новые приборы такого типа будут значительно превосходить своих предшественников.

К основным свойствам арсенид-галлиевых приборов следует отнести:

  • значительный диапазон рабочих температур (до 250 °C);
  • лучшие частотные свойства (арсенид-галлиевые диоды могут работать в качестве выпрямителей малой мощности до частоты 1 МГц и выше);
  • повышенное (более 3 В) падение напряжения при прямом смещении.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Выпрямительные диоды с барьером шоттки — наиболее перспективный вид полупроводниковых выпрямительных диодов. Они могут изготавливаться из кремния или арсенида галлия. Очевидно, что по мере совершенствования и удешевления технологии изготовления диоды с барьером Шоттки будут все более вытеснять выпрямительные диоды с pp-nn-переходом. Основными свойствами выпрямительных диодов Шоттки являются:

  • малое падение напряжения при прямом смещении (около 0,6 В);
  • большая максимально допустимая плотность тока, что связано как с меньшим падением напряжения на диоде, так и с особенностями его конструкции, обуславливающими хороший отвод тепла от выпрямляющего перехода;
  • способность выдерживать значительные перегрузки по току по сравнению с аналогичными диодами с pp-nn-переходом;
  • кремниевые и особенно арсенид-галлиевые диоды Шоттки имеют пока относительно маленькие значения пробивных напряжений (20...70 В), но по мере совершенствования технологии их изготовления этот недостаток постепенно устраняется.

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Пример маркировки выпрямительных диодов

Выпрямительный диод, Типы выпрямителей переменного тока Принцип действия и сравнение. Особенности выбора выпрямительных диодов

Вау!! 😲 Ты еще не читал? Это зря!

Исследование, описанное в статье про выпрямительный диод, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое выпрямительный диод, типы выпрямителей переменного тока, выпрямители, диоды с барьером шоттки, диоды шоттки, выпрямительные диоды, выпрямительный диод и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Источники питания радиоэлектронной аппаратуры

создано: 2020-04-29
обновлено: 2024-11-13
77



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Источники питания радиоэлектронной аппаратуры

Термины: Источники питания радиоэлектронной аппаратуры