Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Вторичный источник электропитания

Лекция



Привет, сегодня поговорим про вторичный источник электропитания, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое вторичный источник электропитания , настоятельно рекомендую прочитать все из категории Источники питания радиоэлектронной аппаратуры.

вторичный источник электропитания — это устройство, предназначенное для обеспечения питания электроприбораэлектрической энергией, при соответствии требованиям ее параметров: напряжения, тока, и т. д. путем преобразования энергиидругих источников питания . Согласно ГОСТ Р 52907-2008 слово «вторичный» опускается .

Источник электропитания может быть интегрированным в общую схему (обычно в простых устройствах; либо когда недопустимо даже незначительное падение напряжения на подводящих проводах — например материнская плата компьютера имеет встроенные преобразователи напряжения для питания процессора), выполненным в виде модуля (блока питания, стойки электропитания и т. д.), или даже расположенным в отдельном помещении (цехе электропитания).

Вторичный источник электропитания

Промышленные модулиэлектропитания Siemens SITOP Power. Нижний правый — БП дляAS-i интерфейса

Задачи вторичного источника питания

  • Обеспечение передачи мощности — источник питания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.
  • Преобразование формы напряжения — преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.
  • Преобразование величины напряжения — как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины для питания различных цепей.
  • Стабилизация — напряжение, ток и другие параметры на выходе источника питания должны лежать в определенных пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и т. д. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.
  • Защита — напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.
  • Гальваническая развязка цепей — одна из мер защиты от протекания тока по неверному пути.
  • Регулировка — в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.
  • Управление — может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).
  • Контроль — отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

Чаще всего перед вторичными источниками питания стоит задача преобразования электроэнергии из сети переменного тока промышленной частоты (напр., в России — 220 В 50 Гц, в США — 120 В 60 Гц).

Две наиболее типичных конструкции — это трансформаторные и импульсные источники питания.

Трансформаторный (сетевой) источник питания

Вторичный источник электропитания
Трансформаторный блок питания
Вторичный источник электропитания
Схема простейшего трансформаторного источника питания без стабилизации с двухполупериодным выпрямителем

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающеготрансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырех диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр,сглаживающий колебания (пульсации). Об этом говорит сайт https://intellect.icu . Обычно он представляет собой просто конденсатор большой емкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков (варисторы), защиты от КЗ,стабилизаторы напряжения и тока.

Габариты трансформатора

Существует формула, несложно выводимая из базовых законов электротехники (и даже уравнений Максвелла):

Вторичный источник электропитания

где Вторичный источник электропитания — число витков на 1 вольт (в левой части формулы стоит ЭДС одного витка, которая есть по уравнению Максвелла производная от магнитного потока, поток есть нечто в виде Вторичный источник электропитания, Вторичный источник электропитания — частота переменного тока, Вторичный источник электропитания — площадь сечения магнитопровода, Вторичный источник электропитания — индукция магнитного поля в нем. Формула описывает амплитуду Вторичный источник электропитания, а не мгновенное значение.

Величина Вторичный источник электропитания на практике ограничена сверху возникновением гистерезиса в сердечнике, что приводит к потерям на перемагничивание и перегреву трансформатора.

Если принять, что Вторичный источник электропитания есть частота сети (50 Гц), то единственные два параметра, доступные для выбора при разработке трансформатора, есть Вторичный источник электропитания и Вторичный источник электропитания. На практике принята эвристика:

Вторичный источник электропитания = (от 55 до 70)

Вторичный источник электропитанияВторичный источник электропитания

 в см²

Увеличение Вторичный источник электропитания означает повышение габаритов и веса трансформатора. Если же идти по пути снижения Вторичный источник электропитания, то это означает повышение Вторичный источник электропитания, что в трансформаторе небольшого размера означает снижение сечения провода (иначе обмотка не поместится на данном сердечнике).

Увеличение Вторичный источник электропитания и снижение сечения означает сильное увеличение активного сопротивления обмотки. В маломощных трансформаторах, где ток через обмотку невелик, этим можно пренебречь, но с повышением мощности ток через обмотку растет и, при высоком сопротивлении обмотки, рассеивает на ней значительную тепловую мощность, что недопустимо.

Перечисленные выше соображения приводят к тому, что на частоте 50 Гц трансформатор большой (от десятков ватт) мощности может быть успешно реализован только как устройство большого габарита и веса (по пути повышения Вторичный источник электропитания и сечения провода со снижением Вторичный источник электропитания).

Потому в современных БП идут по другому пути, а именно по пути повышения Вторичный источник электропитания, то есть переходу на импульсные блоки питания. Таковые блоки питания в разы легче (причем основная часть веса приходится на экранирующую клетку) и значительно меньше габаритами, чем классические. Кроме того, они не требовательны к входному напряжению и частоте.

Достоинства и недостатки

Достоинства трансформаторных БП.

  • Простота конструкции.
  • Надежность.
  • Доступность элементной базы.
  • Отсутствие создаваемых радиопомех (в отличие от импульсных, создающих помехи за счет гармонических составляющих).

Недостатки трансформаторных БП.

  • Большой вес и габариты, пропорционально мощности.
  • Металлоемкость.
  • Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.
  • Слабая стойкость оборудования с таким БП к броскам напряжения и пропаданию нейтрали ведущей к образованию фазного напряжения (порядка 380..400 вольт) вместо линейного (220..230 вольт).

Импульсный источник питания

Вторичный источник электропитания
Импульсный блок питания компьютера (ATX) со снятой крышкой
A — входной выпрямитель. Ниже виден входной фильтр
B — входные сглаживающие конденсаторы. Правее виден радиатор высоковольтных транзисторов
C — импульсный трансформатор. Правее виден радиатор низковольтных ключей
D — дроссель групповой стабилизации (ГДС)
E — конденсаторы выходного фильтра

Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности, либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной фильтр нижних частот (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы — это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи. Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространенными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона. В зависимости от величины сигнала обратной связи (зависящего от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения. Таким образом, блок питания поддерживает стабильное выходное напряжение.

Достоинства и недостатки

Достоинства импульсных БП

Сравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами:

  • меньшим весом за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса линейных стабилизаторов складывается в основном из мощных тяжелых низкочастотных силовых трансформаторов и мощных радиаторов силовых элементов, работающих в линейном режиме. Кроме того, благодаря повышенной частоте преобразования, значительно уменьшаются габариты фильтра выходного напряжения (можно использовать конденсаторы значительно меньшей емкости, чем для выпрямителей, работающих на промышленной частоте). Сам выпрямитель может быть выполнен по простейшей однополупериодной схеме, без риска увеличения пульсаций выходного напряжения;
  • значительно более высоким КПД (вплоть до 90-98 %) за счет того, что основные потери в импульсных стабилизаторах связаны спереходными процессами в моменты переключения ключевого элемента. Поскольку основную часть времени ключевые элементы находятся в одном из устойчивых состояний (то есть либо включен, либо выключен) потери энергии минимальны;
  • меньшей стоимостью, благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности. Кроме этого следует отметить значительно более низкую стоимость импульсных трансформаторов при сравнимой передаваемой мощности, и возможность использования менее мощных силовых элементов, поскольку режим их работы ключевой;
  • сравнимой с линейными стабилизаторами надежностью.
    Блоки питания вычислительной техники, оргтехники, бытовой электроники почти исключительно импульсные. Линейные БП малой мощности сохранились в основном только в следующих областях:
    • для питания слаботочных плат управления высококачественной бытовой техники вроде стиральных машин, микроволновых печей и отопительных котлов и колонок;
    • для маломощных управляющих устройств высокой и сверхвысокой надежности, рассчитанной на многолетнюю непрерывную эксплуатацию при отсутствии обслуживания или затрудненном обслуживании, как, например, цифровые вольтметры в электрощитах, или автоматизация производственных процессов.
  • широким диапазоном питающего напряжения и частоты, недостижимым для сравнимого по цене линейного. На практике это означает возможность использования одного и того же импульсного БП для носимой цифровой электроники в разных странах мира — Россия/США/Англия, сильно отличных по напряжению и частоте в стандартных розетках.
  • наличием в большинстве современных БП встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания и от отсутствия нагрузки на выходе.

Недостатки импульсных БП

  • Работа основной части схемы без гальванической развязки от сети, что, в частности, несколько затрудняет ремонт таких БП;
  • Все без исключения импульсные блоки питания являются источником высокочастотных помех, поскольку это связано с самим принципом их работы. Поэтому требуется предпринимать дополнительные меры помехоподавления, зачастую не позволяющие устранить помехи полностью. В связи с этим часто недопустимо применение импульсных БП для некоторых видов аппаратуры.
  • Как правило, импульсные блоки питания имеют ограничение на минимальную мощность нагрузки. Если мощность нагрузки ниже минимальной, блок питания либо не запускается, либо параметры выходных напряжений (величина, стабильность) могут не укладываться в допустимые отклонения.
  • В распределенных системах электропитания: эффект гармоник кратных трем. При наличии эффективно действующих корректоров фактора мощности и фильтров во входных цепях этот недостаток обычно не актуален.

Вау!! 😲 Ты еще не читал? Это зря!

К сожалению, в одной статье не просто дать все знания про вторичный источник электропитания. Но я - старался. Если ты проявишь интерес к раскрытию подробностей,я обязательно напишу продолжение! Надеюсь, что теперь ты понял что такое вторичный источник электропитания и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Источники питания радиоэлектронной аппаратуры

создано: 2014-10-09
обновлено: 2023-07-01
132568



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей



Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Источники питания радиоэлектронной аппаратуры

Термины: Источники питания радиоэлектронной аппаратуры