Лекция
Это окончание невероятной информации про .
...
овеществленного опыта. Приверженцы этой точки зрения, включая Винограда, Флореса и Дрейфуса (Dreyfus), говорят, что понимание личностью каких-либо аспектов основывается на их практическом "использовании" в повседневной жизни. По существу, мир представляет собой контекст социально организованных ролей и целей. Эта среда и функционирование человека в ней не объясняются соотношениями и теоремами. Это поток, который сам себя формирует и непрерывно модифицирует. В фундаментальном смысле в мире эволюционирующих норм и неявных целей человеческий опыт - это знание не объекта, а, скорее, способа действия. Человек по своей сути не способен выразить большую часть своего знания и разумного поведения в форме языка, будь то формального или естественного.
Рассмотрим эту точку зрения. Во-первых, как критика чисто рационалистской традиции, она верна. Рационализм отстаивает позицию, что всякая человеческая деятельность, интеллект и ответственность в принципе могут быть представлены, формализованы и поняты. Большинство вдумчивых людей ставят это под сомнение, отводя важную роль эмоциям, самоутверждению и обязательствам долга (наконец-то!). Сам Аристотель говорил: "Почему я не чувствую побуждения делать то, что требует ответственность?". Существует множество разновидностей человеческой деятельности, выходящих за пределы досягаемости научного метода, которые играют важную роль в сознательном взаимодействии людей. Их невозможно воспроизвести в машинах.
И все же научная традиция, состоящая в изучении данных, построении моделей, постановке экспериментов и проверке результатов с уточнением модели дальнейших экспериментов, дала человечеству высокий уровень понимания, объяснения и способности предсказывать. Научный метод - мощный инструмент для улучшения понимания человека. Тем не менее в этом подходе остается множество подводных камней.
Во-первых, ученые не должны путать модель с моделируемым явлением. Модель позволяет постепенно аппроксимировать феномен, но всегда имеется "остаток", который нельзя объяснить эмпирически. В этом смысле неоднозначность представления не является проблемой. Модель используется для исследования, объяснения и предсказания, и если она выполняет эти функции, то это - удачная модель [Kuhn, 1962]. В самом деле разные модели могут успешно пояснять разные аспекты одного явления, например, волновая и корпускулярная теории света.
Более того, когда исследователи утверждают, что некоторые аспекты интеллекта находятся за рамками методов научной традиции, само это утверждение можно проверить лишь с помощью этой традиции. Научный метод - единственный инструмент, с помощью которого можно объяснить, в каком смысле вопросы могут быть за пределами текущего понимания человека. Всякая логически последовательная точка зрения, даже точка зрения феноменологической традиции, должна соотноситься с текущими представлениями об объяснении, даже если она всего лишь устанавливает границы, в которых феномен может быть объяснен.
Эти вопросы необходимо рассматривать для сохранения логической связности и развития ИИ. Для того чтобы понять процесс решения задач, обучение и язык, необходимо осмыслить представления и знания на уровне философии. Исследователям предстоит решать аристотелевское противоречие между теорией и практикой, жить между наукой и искусством.
Ученые создают инструменты. Все наши представления, алгоритмы и языки - это инструменты для проектирования и построения механизмов, проявляющих разумное поведение. Посредством эксперимента можно исследовать как их вычислительную адекватность для решения задач, так и наше собственное понимание явления интеллекта.
Мы наследники традиции Гоббса, Лейбница, Декарта, Бэббиджа, Тьюринга и других, о чьем вкладе в науку было рассказано в главе 1. Инженерия, наука и философия; природа идей, знаний и опыта; могущество и пределы формализма и механизма - это ограничения, с которыми необходимо считаться и с учетом которых нужно продолжать исследования.
Если я не полностью рассказал про Искусственный интеллект как эмпирическая проблема? Напиши в комментариях Надеюсь, что теперь ты понял что такое Искусственный интеллект как эмпирическая проблема и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Подходы и направления создания Искусственного интеллекта
Часть 1 Искусственный интеллект как эмпирическая проблема
Часть 2 16.1.3. Агенты, интеллект и эволюция - Искусственный интеллект как эмпирическая
Часть 3 Дилемма эмпирика - Искусственный интеллект как эмпирическая проблема
Часть 4 - Искусственный интеллект как эмпирическая проблема
Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.
Комментарии
Оставить комментарий
Подходы и направления создания Искусственного интеллекта
Термины: Подходы и направления создания Искусственного интеллекта