Лекция
Привет, Вы узнаете о том , что такое полупроводниковый диод, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое полупроводниковый диод, вах диодов, классификация диодов, уго диодов, вольтамперная характеристика диодов, параметры диодов, простейший выпрямитель, простейший стабилизатор, диод , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база.
Полупроводниковым диод ом называют электропреобразовательный прибор, который, как правило, содержит один или несколько электрических переходов и два вывода для подключения к внешней цепи. Принцип работы большинства диодов основан на использовании различных физических явлений в электрических переходах. Наиболее часто в диодах применяют электроннодырочные переходы, контакты металл-полупроводник, анизотипные гетеропереходы. Однако существуют диоды, структура которых не содержит выпрямляющих электрических переходов (например, диод Ганна) либо содержит несколько переходов (например, p-i-n-диод, динистор), а также диоды с более сложной структурой переходов (например, MДM- и MДП-диоды и др.).
полупроводниковый диод — полупроводниковый прибор, в широком смысле — электронный прибор, изготовленный из полупроводникового материала, имеющий два электрических вывода (электрода). В более узком смысле — полупроводниковый прибор, во внутренней структуре которого сформирован один p-n-переход.
В отличие от других типов диодов, например, вакуумных, принцип действия полупроводниковых диодов основывается на различных физических явлениях переноса зарядов в твердотельном полупроводнике и взаимодействии их с электромагнитным полем в полупроводнике.
Полупроводниковыми диодами называются полупроводниковые приборы с одним p-n-переходом и двумя выводами.
Полупроводниковый прибор с одним электрическим переходом, работа которого заключается в преобразования одних электрических значений в другие, называют диодом. В конструкции данного изделия предусматривается два вывода для монтажа.
Сущесвуют также диодные сборки с множеством выводов.
Онлайн демонстрация и симуляция работы График ВАХ диода:
Открыть на весь экран График ВАХ диода
Идеальный ПД имеет нулевой ток при обратном включении (плюс на катод, минус на анод), и на нем нулевое падение напряжения при прямом включении (плюс на анод, минус на катод). Он не имеет внутренних индуктивности и емкости. Переключение происходит мгновенно, то есть, как только полярность тока сменилась, изменяется проводимость - ток возникает, падение напряжения пропадает, или ток пропадает, падение напряжения возникает.
Идеальный полупроводниковый диод не рассеивает мощности, так как рассеиваемая мощность равна произведению тока на напряжение, а на идеальном диоде либо нулевой ток, либо нулевое напряжение.
Идеальный ПД никогда не нагревается, имеет нулевые размеры, не занимает место на плате. Он не шумит, не создает шумовых помех в проходящем токе. Идеальный ПД выдерживает любое напряжение и любой ток.
Если бы удалось создать идеальный ПД, то нужен был бы всего один тип диода - ПИПД (просто идеальный полупроводниковый диод). Его можно было бы применять во всех схемах. Но такой прибор пока не создан. Можно ли его создать - большой вопрос.
Реальные ПД обладают некоторым обратным током, напряжением насыщения (падением напряжения на диоде при определенном прямом токе через него), временем включения (временем, через которое возникает ток после приложения прямого напряжения) и выключения (временем, через которое ток прекратится, если раньше диод был включен в прямом направлении, проводил ток, а теперь включен в обратном), напряжением пробоя (обратным напряжением, при котором возникает проводимость диода, наступает пробой). У реальных диодов есть ограничения по среднему и импульсному токам, рассеиваемой мощности. Реальные диоды обладают емкостью и индуктивность
Один и тот же вид диода может изготавливаться в различных корпусах. Для портативных устройств лучшим вариантом является диоды в форм-факторе SMD. Проволочные выводы в них заменены контактными площадками. Это обеспечивает им минимальные габаритные размеры, а также позволяет отказаться от монтажа в отверстия платы печатной платы и перейти на поверхностный. Сейчас поверхностным монтажом собирается более 95% портативных устройств. Его просто автоматизировать, а пайка ведется с помощью инфракрасной печи или ручного паяльного фена.
Рисунок 3.1 – Упрощенная структура и условное графическое обозначение полупроводникового диода.
Рисунок 3.1 – Устройство плоскостного диода.
Рисунок 3.1 – Устройство точечного диода.
Под понятием полупроводникового диода собрано множество приборов с различным назначением. Приборы с одним p—n-переходом;
Приборы с иными разновидностями полупроводниковых структур:
Фотоэлектрические приборы со структурой типа p—i—n:
Также, помимо прочего, к диодам относят:
Плоскостные диоды обладают с высокими емкостными характеристиками. Об этом говорит сайт https://intellect.icu . С увеличением частоты емкостное сопротивление понижается, что приводит к нарастанию его обратного тока. На больших частотах вследствие того в диоде есть емкость, величина его обратного тока может достичь значения прямого тока, и этот диод, таким образом, утратит свое основное свойство односторонней электропроводности. Для сохранения своих функциональных качеств необходимо снизить емкость диода. Это достигается с помощью всевозможных технологических и конструктивных методов, направленных на сокращения площади p-n-перехода.
В диодах, используемых в схемах, работающих с высокочастотным током, применяют изделия с точечными и микросплавными p-n-переходами. Нужный точечный p-n-переход, получается в месте контакта заостренного окончания специальной металлической иглы с полупроводником. При этом применяют способ электроформования, заключающемся в том, что через соединение проволоки и кристалла полупроводники протекают импульсы электрического тока, формирующие в месте их контакта p-n-переход. Микросплавными называются такие диоды, у которых p-n-переход создается при электроформовании контакта между пластинкой полупроводника и металлическим предметом с плоским торцом.
SMD форм-фактор не подходит для сильноточных диодов. Поэтому там изготавливают диоды в классическом корпусе с двумя выводами. При токах на диоде свыше 10 ампер необходимо уже обеспечивать принудительное охлаждение диода. Для этого они снабжаются болтом и гайкой для крепления к теплоотводящему радиатору. Сейчас серийно выпускаются выпрямительные диоды с максимально допустимым током до 2500 А и напряжением 2000 вольт. Такие модели изготавливаются в дисковом корпусе диаметром около 70 мм. Оба торца являются токоведущими выводами и теплоотводящими поверхностями. Выпрямительные диоды часто делаются в виде сборок по четыре (диодный мост).
Универсальные импульсные диоды применяются в большом количестве при изготовлении бытовых электронных устройств. Там с помощью них реализуют логические операции, выпрямляют токи небольшой величины. Объемы их выпуска наиболее велики. Цена на них при оптовой покупке составляет несколько центов и менее.
Стабилитроны являются простым сенсором, реагирующим на изменение напряжения. Именно такую функцию они выполняют в стабилизаторах напряжения. При помощи организации специальной схемы, маломощным стабилитроном можно стабилизировать значительные токи.
Варикапы являются неотъемлемым компонентом современных радиочастотных схем. Именно с помощью них осуществляется модуляция и перестройка частоты. Важнейшая характеристика варикапа — перекрываемая емкость и добротность. От этого зависит, на какой рабочей частоте может работать варикап. Для СВЧ схем требуются очень высокие значения добротности.
система параметров приводятся в справочниках.
Эта система позволяет правильно выбрать диод для применения в конкретных условиях.
Iпр – прямой ток, проходящий в прямом направлении,
Uпр – прямое напряжение,
Iпр max – максимально доступный прямой ток,
Uобр max – максимально доступное обратное напряжение,
Iобр – обратный ток диода,
Uобр – обратное напряжение диода – (постоянное напряжение, приложенное к диоду в обратном направлении).
Пример: КД204А Iпр = 2 А, Uобрmax = 400 В,
Uпр = 1.4 В, Iобр = 150 мкА
Диоды, как нелинейные элементы, характеризуются
статическим Rc = U/I
дифференциальным (динамическим) Rдиф = ∆U/∆I
Общее обозначение диода
Так обозначают на схемах выпрямительные, высокочастотные, импульсные диоды.
Обозначение стабилитронов
Обозначение двухстроннего стабилитрона
Двухсторонний стабилитрон чаще называют двуханодным. Главная прелесть состоит в том, что его можно включать независимо от полярности. Причем стабилитроны одной и той же марки могут быть как двухсторонними, так и односторонними, например, КС162, КС168, КС133 и др. бывают в железных корпусах (или в стекле) и они односторонние, а бывают в пластмассe обычно красного цвета - двуханодные.
Oбозначение варикапа
Обозначение варикапной матрицы
Обозначение туннельного диода
Oбозначение обращенного туннельного диода
Oбозначение диода с барьером Шотки (диод Шотки)
Oбозначение светодиода
Oбозначение фотодиода
Плоскостные
В зависимости от разработки диода его обозначение может включать дополнительные символы . Об этом говорит сайт https://intellect.icu . В любом случае вершина треугольника, примыкающая к осевой линии диода, указывает на направление протекания тока. В той части обозначения, где располагается треугольник , находится p-область, которую еще называют анодом или эмиттером, а со стороны, где к треугольнику примыкает отрезок , находится n-область, которую соответственно называют катодом, или базой.
Выпрямительные Стабилитрон Туннельные Варикапы Светодиоды Фотодиоды
Условные графические обозначения элементов, компонентов и устройств волоконно-оптических систем передачи с применением диодов
обозначение лазерных диодов
1 – исходный материал:
германий - буква Г или цифра 1 ;
кремний - буква К или цифра 2 ;
галлий - буква А или цифра 3 ;
индий - буква И или цифра 4
2 – тип прибора:
А - СВЧ диоды
В - варикап ы
Д - выпрямительные и импульсные
И - туннельные диоды
Л - излучающие диоды (светодиоды)
Н - диодные тиристоры ( динисторы )
С - стабилитрон ы
Ц - выпрямительные столбы и блоки
3 – цифры обозначают некоторые основные параметры диода (мощность) (для стабилитронов четвертый элементы характеризуют напряжение стабилизации),
4 – буквы и /или цифры, обозначающие порядковый номер разработки
5 - буква, определяющая классификацию по параметрам.
Полупроводниковые диоды, назначение которых заключается в преобразовании переменного тока в постоянный ток, называются выпрямительными. Выпрямление переменного тока с использованием полупроводникового диода построено на основе его односторонней электропроводности, которая заключается в том, что диод создает очень малое сопротивление току, текущему в прямом направлении, и достаточно большое сопротивление обратному току.
Для того чтобы выпрямить ток большой силы не опасаясь теплового пробоя, конструкция диодов должна предусматривать значительную площадь p-n-перехода. В связи, с чем в выпрямительных полупроводниковых диодах задействуют специальные p-n-переходы соответствующие последнему слову науки и техники.
Технология создания p-n-перехода получается, за счет ввода в полупроводник p-или n-типа примеси, которая создает в нем область с противоположным значением электропроводности. Примеси можно добавлять методом сплавления или диффузии.
Диоды, получаемые методом сплавления, называют «сплавными», а изготавливаемые методом диффузии «диффузионными».
График стабилитрона
Вольтамперная характеристика (ВАХ) реального диода
Для технических целей используют ВАХ в линейных координатах.
При больших напряжениях обратного смещения в диоде может развиться пробой – резкое увеличение обратного тока при незначительном изменении напряжения. При лавинном пробое электроны в электрическом поле p-n перехода приобретают энергию, достаточную для ионизации собственных атомов полупроводника. Это приводит к лавинному размножению носителей заряда, резкому увеличению их локальной концентрации и соответственно тока. После развития лавинного пробоя диод не теряет свою работоспособность. Этот вид пробоя используется в полупроводниковых стабилитронах, о свойствах которых будет сказано далее.
Тепловой пробой развивается в результате локального разогрева области p-n перехода, и как следствия, увеличения концентрации носителей заряда. Тепловой пробой является необратимым, после которого диод теряет свои свойства и работоспособность.
Вольтамперная характеристика идеального диода
Стабилитронами стабилизируют уровень напряжения примерно от 3,5 Ви выше. Для стабилизации постоянного напряжения до 1 вольта применяют стабисторы. У стабисторов работает не обратная, а прямая часть вольтамперной характеристики. Поэтому их подсоединяют не в обратном, как делают со стабилитронами, а в прямом направлении. Электронные компоненты, такие как стабисторы и стабилитроны, как правило, изготовляются, из кремния.
Вольтамперная характеристика стабистора
Вольт-амперная характеристика диода описывается уравнением Шокли:
где
Темновой ток насыщения — ток утечки диода, определяемый его конструкцией, является масштабным коэффициентом. Коэффициент идеальности — также конструктивная характеристика диода. Для идеального диода равен 1, для реальных диодов колеблется от 1 до 2 в зависимости от различных параметров (резкость перехода, степень легирования и пр.)
Простейший выпрямитель
В ходе положительного полупериода входного напряжения U1 диод Vработает в прямом направлении, его сопротивление маленькое и на нагрузке RH напряжение U2практически равно входящему напряжению.
График напряжения на входе и выходе простейшего однополупериодного выпрямителя
При отрицательном полупериоде данного входного напряжения диод включен в направлении обратно, где его сопротивление формируется значительно больше, чем сопротивление на нагрузке, и почти все входящее напряжение падает на диоде, а напряжение на нагрузке приближается к нулю В такой схеме для получения выпрямленного напряжения используется всего лишь один полупериод входящего напряжения, поэтому такой тип выпрямителей называется однополупериодным.
Полупроводниковые диоды, которые используются для стабилизации постоянного напряжения на нагрузке, называют стабилитронами. В стабилитронах задействован участок обратной участка вольтамперной характеристики в поле электрического пробоя.
Схема простейшего стабилизатора напряжения
В данном случае при изменении тока, проходящего через стабилитрон, от Iст. мин. до Iст. макс. напряжение на нем практически не изменяется. Если нагрузка RH включена параллельно стабилитрону, уровень напряжения на ней также будет оставаться неизменным в указанных пределах изменения тока, проходящего через стабилитрон.
Светодиоды |
|
|
---|---|---|
Выпрямительные |
|
|
Генераторные диоды |
|
|
Источники опорного напряжения |
|
|
Прочие |
Исследование, описанное в статье про полупроводниковый диод, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое полупроводниковый диод, вах диодов, классификация диодов, уго диодов, вольтамперная характеристика диодов, параметры диодов, простейший выпрямитель, простейший стабилизатор, диод и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база
Комментарии
Оставить комментарий
Электроника, Микроэлектроника , Элементная база
Термины: Электроника, Микроэлектроника , Элементная база