Лекция
Привет, Вы узнаете о том , что такое фототранзисторы, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое фототранзисторы, фототранзистор , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база.
фототранзистор - это управляемый излучением прибор с двумя или большим числом взаимодействующих между собой электрических переходов. Его применяют в качестве чувствительного к излучению элемента оптоэлектронных пар и фотоприемных устройств, первичного преобразователя измерительных информационных систем, элемента приемного модуля волоконно-оптических линий связи средней пропускной способности и др. Различают биполярные и полевые фототранзисторы . К фототранзисторам также относится фототиристор.
Схематическое изображение фототранзистора на электрических схемах
VТ1 – фототранзисторы с базой, VТ2 – фототранзисторы без базы.
Фототранзистор изобрел Джон Нортроп Шив (John Northrup Shive) в 1948 г., во время его работы в Bell Laboratories , но об этом изобретении было заявлено только в 1950 г. Тогда же фототранзисторы были впервые применены в считывателе перфокарт в автоматической телефонной станции.
Рис. 1
Один из возможных вариантов конструкции фототранзистора показан на Рис.1. Как видно из этого рисунка, фототранзистор отличается от обычного транзистора лишь прозрачным окном в корпусе; через него световой поток падает на пластину полупроводника, служащую базой, в центре которой путем вплавления создан коллекторный переход.
Возможны и другие варианты расположения электродов, например кольцеобразный коллектор на освещаемой поверхности базы.
Устройство и схема включения биполярного фототранзистора также показаны на Рис.2.а.
Фототранзистор состоит из:
1 - эмиттерной области р+- типа;
2 - области базы n- типа, большая часть которой пассивна и открыта световому потоку;
3 - широкой коллекторной области р- типа.
Рис.2
Пассивная часть базы расположена на Рис.2.а слева от штрих пунктирной линии. Фототранзистор, как правило, включается по схеме ОЭ с резистором нагрузки Rн в коллекторной цепи (Рис.2.а). Входным сигналом фототранзистора является модулированный световой поток, а выходным - изменение напряжения на его коллекторе.
Типовая спектральная чувствительность кремниевого фототранзистора
Рассмотрим принцип работы фототранзистора в схеме с разорванной цепью базы. Оптический сигнал генерирует в коллекторном переходе и области пассивной базы носители. Эти носители диффундируют в базе к коллекторному переходу и разделяются его электрическим полем. Не основные носители создают фототок коллекторного перехода, а основные накапливаются в базе и компенсируют заряд неподвижных ионов примесей на границе эмиттерного перехода. Потенциальный барьер перехода снижается, что усиливает инжекцию носителей из эмиттера в базу. Инжектированные носители диффундируют через базу к коллекторному переходу и втягиваются его электрическим полем в область коллектора. Ток инжектированных носителей, а соответственно и образованный ими коллекторный ток многократно превышает фототок оптически генерируемых носителей.
Общий ток коллектора - это сумма фототока Iфб и тока Iкр инжектированных эмиттером дырок, прошедших коллекторный переход.
Коэффициент усиления фототока:
М=(Iфв+Iкр)/Iфб=β+1, если , (1)
где β - статический коэффициент передачи по току транзистора в схеме с ОЭ.
Усиленный в М раз фототок создает падение напряжения на резисторе нагрузки Rн, изменяя напряжение коллектора на:
, (2)
Из этого соотношения следует, что фототранзистор можно представить в виде эквивалентного фотодиода VD и усилительного транзистора VT (Рис.2.б). Эквивалентный фотодиод образован пассивной базой и областью коллектора слева от штрих-пунктирной линии на Рис.2.а, структура усилительного транзистора расположена справа от этой линии. Транзистор увеличил чувствительность эквивалентного фотодиода в ( β+1) раз.
Вывод базы Б фототранзистора иногда используется для подачи смещения при выборе рабочей точки на входной и выходной характеристиках транзистора и обеспечения ее температурной стабилизации.
Семейство выходных характеристик фототранзистора в схеме с ОЭ приведено на Рис.2.в. Фототок образован генерируемыми в области базы неравновесными носителями.
Световая характеристика фототранзистора - это зависимость тока коллектора от светового потока Iк=f(Ф). Она линейна только при малых потоках. С увеличением светового потока и ростом концентрации неравновесных носителей в базе повышается вероятность их рекомбинации, снижаются коэффициенты переноса, и инжекции фототранзистора. Прямо пропорциональная зависимость коллекторного тока от светового потока нарушается.
Рис. 3
Большинство параметров биполярного фототранзистора аналогично по физическому смыслу параметрам фотодиодов. Кроме того, фототранзистор характеризуется рабочим напряжением питания, емкостями переходовСк и Сэ, статическим коэффициентом усиления по току и другими параметрами обычного транзистора.
Вольт-амперные характеристики фототранзистора (Рис.3) напоминают выходные характеристики обычного транзистора в схеме ОЭ, но параметром здесь служит не ток IК, а световой поток Ф.
Крутой начальный участок этих характеристик соответствует режиму насыщения: при малых Uкэ коллекторный переход, как и в биполярном транзисторе, за счет накопления дырок в коллекторе открывается. Об этом говорит сайт https://intellect.icu . Наклон характеристик к оси абсцисс в их пологой части объясняется, так же как и для биполярного транзистора, эффектом модуляции ширины базы.
Рис. 4
Частотные свойства фототранзисторов определяются в основном диффузионным движением носителей в базе прибора и процессами заряда емкостей переходов.
С увеличением частоты модуляции светового потока фототок уменьшается так же, как и в фотодиодах (Рис.4).
Одним из важнейших параметров фототранзистора служит коэффициент усиления по фототоку фототранзистора (Куф) - отношение фототока коллектора фототранзистора при отключенной базе к фототоку освещаемого р-n перехода, измеренному в диодном режиме:
, (3)
Токовая чувствительность фототранзистора - это отношение изменения электрического тока на выходе фототранзистора к изменению потока излучения при холостом ходе на входе и коротком замыкании на выходе по переменному току. Для схемы с общим эмиттером токовая чувствительность равна:
(4)
Эмиттерный переход биполярного фототранзистора включен в прямом направлении. Его удельная емкость около 105 . Постоянная времени заряда емкости эмиттерного перехода увеличивается с ослаблением интенсивности светового потока. При малых световых потоках она определяет в основном инерционность фототранзистора. При больших световых потоках на инерционность фототранзистора влияют время диффузии носителей в базе и емкость коллекторного перехода. Поэтому для фототранзистора выбирают материалы с высокой подвижностью носителей, используют структуру с внутренним электрическим полем в базе или с тонкой базой. Уменьшать емкость коллекторного перехода снижением концентрации примесей в области коллектора удается лишь до некоторого предела. Сокращать для этой цели площадь эквивалентного фотодиода нецелесообразно, так как при этом падает чувствительность фототранзистора.
Рис. 5
Для повышения чувствительности фототранзистора следует увеличивать толщину базы,время жизни носителей в базе и, следовательно, выбирать материалы с высоким удельным сопротивлением. Но для повышения его граничной частоты толщину базы и время жизни носителей необходимо уменьшать. Разрешает противоречие между быстродействием и чувствительностью структура фотодиод - транзистор, эквивалентная схема которой показана на Рис.5. Оба элемента структуры изготовлены в одном кристалле. Параметры фотодиода выбирают из условий достижения максимальной чувствительности и быстродействия, а параметры транзистора - максимальной граничной частоты и усиления. В совокупности оба элемента эквивалентны быстродействующему фототранзистору с высоким коэффициентом усиления
Рис.6
Устройство и схема включения полевого фототранзистора с управляющим р-n переходом показаны на Рис.6.а
где: 1 - просветляющее покрытие;
2 - диэлектрический слой;
3 - область истока n+ - типа;
4 - канал n- типа;
5 - область затвора р- типа;
6 - стоковая область n+ - типа;
7 - выводы прибора;
Rн - резистор нагрузки в цепи затвора;
Rн.тр - резистор нагрузки фототранзистора.
Световой поток генерирует неравновесные носители в области затвора 3 и р-n перехода затвор-канал. Электрическое поле этого перехода разделяет неравновесные носители. В цепи затвора появляется фототок Iф. Он создает на резисторе Rн падение напряжения:
(5)
Напряжение на затворе увеличивается, ток стока изменяется на:
, (6)
где S - крутизна стокозатворной характеристики полевого транзистора. Проводимость канала возрастает, и соответственно уменьшается напряжение стока на:
, (7)
Изменение напряжения стока является выходным электрическим сигналом схемы. Таким образом, полевой фототранзистор эквивалентен фотодиоду “затвор-канал” и усилительному полевому транзистору с управляющим р-n переходом (Рис.6.б).
Рис.7
В эквивалентной схеме полевого фототранзистора (Рис.7) источники Iфи и Iфс моделируют фототоки р-n переходов “исток-затвор” и “сток-затвор”; источник SUз - усиление в транзисторе; резистор rДИФ - дифференциальное выходное сопротивление транзистора; резисторы Rи, Rc и конденсаторы Си, Сс учитывают сопротивление и емкости переходов между областями “исток-затвор”, “сток-затвор”. Резисторы Rпс, Rпи, R`пс, R`пи с учетом сопротивления омических контактов определяют последовательно включенные сопротивления областей между выводом затвора и областью стока, выводом затвора и областью истока, выводом истока и областью затвора, выводом стока и областью затвора. Для источника тока в выходной цепи фототранзистора можно записать:
, (8)
где Iф.к. - фототок p-n перехода “канал-затвор”.
При коротком замыкании цепи “затвор-исток” объемные сопротивления Rпu, R`пи, Rпс выполняют роль резисторов нагрузки. Постоянными времени (Rпи+R`пи)Cи и (Rпс+R`пс)Cс, а также временем пролета носителей в канале определяется предельное быстродействие фототранзистора.
Параметры полевого фототранзистора аналогичны по физическому смыслу параметрам биполярного.
Структуры полевых транзисторов с р-n переходом и МОП фототранзисторов многообразны. Наибольшие быстродействие и чувствительность у структуры фотодиод - полевой транзистор. Фотодиод совмещен с областью истока полевого транзистора - усилительного элемента. Каждая из составляющих структуры оптимизирована: фотодиод - по чувствительности и быстродействию, полевой транзистор - по граничной частоте и усилению.
Сравнительная оценка параметров фототранзисторов показывает, что наибольшая чувствительность у составного фототранзистора, а максимальное быстродействие при хорошей чувствительности у структуры фотодиод - биполярный транзистор (ФД-БТ). Структура фотодиод - полевой транзистор имеет параметры, близкие к параметрам структуры ФД-БТ. Фототранзисторы уступают фотодиодам по быстродействию, но за счет усиления сигнала имеют высокую чувствительность.
Фототранзисторы имеют рабочий диапазон, размер которого зависит от интенсивности падающего света, так как это связано с положительным потенциалом его базы.
Ток базы от падающего света подвергается усилению в сотни и тысячи раз. Дополнительное усиление тока обеспечивается особым транзистором Дарлингтона, который представляет собой полупроводник, эмиттер которого соединен с базой другого биполярного транзистора. На схеме изображен такой вид фототранзистора.
Это дает возможность создать повышенную чувствительность при слабом освещении, так как происходит двойное усиление двумя полупроводниками. Двумя транзисторами можно добиться усиления в сотни тысяч раз. Необходимо учитывать, что транзистор Дарлингтона медленнее реагирует на свет, в отличие от обычного фототранзистора.
Схема с общим эмиттером
По этой схеме создается сигнал выхода, переходящий от высокого состояния в низкое, при падении лучей света.
Эта схема выполнена с помощью подключения сопротивления между коллектором транзистора и источником питания. Напряжение выхода снимают с коллектора.
Схема с общим коллектором
Усилитель, подключенный с общим коллектором, создает сигнал выхода, переходящий от низкого состояния в высокое, при попадании света на полупроводник.
Эта схема образуется подключением сопротивления между отрицательным выводом питания и эмиттером. С эмиттера снимается выходной сигнал.
В обоих вариантах транзистор может работать в 2-х режимах:
Активный режим
В этом режиме фототранзистор создает сигнал выхода, зависящий от интенсивности падающего света. Когда уровень освещенности превосходит определенную границу, то транзистор насыщается, и сигнал на выходе уже не будет повышаться, даже если увеличивать интенсивность лучей света. Такой режим действия рекомендуется для устройств с функцией сравнения двух порогов потока света.
Режим переключения
Действие полупроводника в этом режиме значит, что транзистор будет реагировать на подачу света выключением или включением. Такой режим необходим для устройств, в которых необходимо получение выходного сигнала в цифровом виде. Путем изменения значения резистора в схеме усилителя, можно подобрать один из режимов функционирования.
Для эксплуатации фототранзистора в качестве переключателя чаще всего применяют сопротивление более 5 кОм. Напряжение выхода повышенного уровня в переключающем режиме будет равно питающему напряжению. Напряжение выхода малого уровня должно равняться менее 0,8 В.
Проверка фототранзистора
Такой транзистор легко проверяется мультитестером, даже без наличия базы транзистора. Если подключить мультитестер к участку эмиттер-коллектор, то его сопротивление при любой полярности будет большим, так как транзистор закрыт. Если луч света попадает на чувствительный элемент, то измерительный прибор покажет низкое значение сопротивления, так как транзистор в этом случае открылся, благодаря свету, при правильной полярности питания.
Так ведет себя обычный транзистор, но он открывается сигналом электрического тока, а не лучом света. Кроме силы света, большую роль играет спектральный состав света.
Приборы, предназначенные для приема внешнего излучения заключают в пластмассовый, металлостеклянный или металлокерамический корпус с прозрачным окошком или линзой, изготовленных из пластмассы или стекла. Исключение составляют фототранзисторы, входящие в состав оптронов, заключенные совместно с источником излучения в непрозрачный корпус.
Приборы, оформленные в металлостеклянных и металлокерамических корпусах, обычно имеют электрический вывод базы.
Сдвоенный фототранзистор
Преимущества фототранзисторов
Недостатки фототранзисторов
Фототранзисторы являются аналогом фотодиодов, однако имеют серьезные недостатки, которые создают условия для узкой специализации этого полупроводника.
Оптопара с составным транзистором фототранзистор-транзистор по схеме Дарлингтона
Так как фототранзисторы более чувствительны чем фотодиоды их удобно применять в качестве приемников излучения в различных системах автоматики безопасности, системах охранной сигнализации, считывателях перфокарт и перфолент, датчиках положения и расстояния и др. применениях, где некритично быстродействие.
Часто фототранзисторы применяют в оптопарах в качестве приемников излучения в оптронах.
так же фототранзисторы применяются в
Исследование, описанное в статье про фототранзисторы, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое фототранзисторы, фототранзистор и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база
Комментарии
Оставить комментарий
Электроника, Микроэлектроника , Элементная база
Термины: Электроника, Микроэлектроника , Элементная база