Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

Лекция



Привет, Вы узнаете о том , что такое фототранзисторы, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое фототранзисторы, фототранзистор , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база.

фототранзистор - это управляемый излучением прибор с двумя или большим числом взаимодействующих между собой электрических переходов. Его применяют в качестве чувствительного к излучению элемента оптоэлектронных пар и фотоприемных устройств, первичного преобразователя измерительных информационных систем, элемента приемного модуля волоконно-оптических линий связи средней пропускной способности и др. Различают биполярные и полевые фототранзисторы . К фототранзисторам также относится фототиристор.

Обозначения на схемах фототранзисторов

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

Схематическое изображение фототранзистора на электрических схемах

VТ1 – фототранзисторы с базой, VТ2 – фототранзисторы без базы.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

История

Фототранзистор изобрел Джон Нортроп Шив (John Northrup Shive) в 1948 г., во время его работы в Bell Laboratories , но об этом изобретении было заявлено только в 1950 г. Тогда же фототранзисторы были впервые применены в считывателе перфокарт в автоматической телефонной станции.

Биполярный фототранзистор. Устройство и принцип действия.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действияРис. 1

Один из возможных вариантов конструкции фототранзистора показан на Рис.1. Как видно из этого рисунка, фототранзистор отличается от обычного транзистора лишь прозрачным окном в корпусе; через него световой поток падает на пластину полупроводника, служащую базой, в центре которой путем вплавления создан коллекторный переход.

Возможны и другие варианты расположения электродов, например кольцеобразный коллектор на освещаемой поверхности базы.

Устройство и схема включения биполярного фототранзистора также показаны на Рис.2.а.

Фототранзистор состоит из:

1 - эмиттерной области р+- типа;

2 - области базы n- типа, большая часть которой пассивна и открыта световому потоку;

3 - широкой коллекторной области р- типа.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действияРис.2

Пассивная часть базы расположена на Рис.2.а слева от штрих пунктирной линии. Фототранзистор, как правило, включается по схеме ОЭ с резистором нагрузки Rн в коллекторной цепи (Рис.2.а). Входным сигналом фототранзистора является модулированный световой поток, а выходным - изменение напряжения на его коллекторе.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

Типовая спектральная чувствительность кремниевого фототранзистора

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

Рассмотрим принцип работы фототранзистора в схеме с разорванной цепью базы. Оптический сигнал генерирует в коллекторном переходе и области пассивной базы носители. Эти носители диффундируют в базе к коллекторному переходу и разделяются его электрическим полем. Не основные носители создают фототок коллекторного перехода, а основные накапливаются в базе и компенсируют заряд неподвижных ионов примесей на границе эмиттерного перехода. Потенциальный барьер перехода снижается, что усиливает инжекцию носителей из эмиттера в базу. Инжектированные носители диффундируют через базу к коллекторному переходу и втягиваются его электрическим полем в область коллектора. Ток инжектированных носителей, а соответственно и образованный ими коллекторный ток многократно превышает фототок оптически генерируемых носителей.

Общий ток коллектора - это сумма фототока Iфб и тока Iкр инжектированных эмиттером дырок, прошедших коллекторный переход.

Коэффициент усиления фототока:

М=(Iфв+Iкр)/Iфб=β+1, если Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия, (1)

где β - статический коэффициент передачи по току транзистора в схеме с ОЭ.

Усиленный в М раз фототок создает падение напряжения на резисторе нагрузки Rн, изменяя напряжение коллектора на:

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия, (2)

Из этого соотношения следует, что фототранзистор можно представить в виде эквивалентного фотодиода VD и усилительного транзистора VT (Рис.2.б). Эквивалентный фотодиод образован пассивной базой и областью коллектора слева от штрих-пунктирной линии на Рис.2.а, структура усилительного транзистора расположена справа от этой линии. Транзистор увеличил чувствительность эквивалентного фотодиода в ( β+1) раз.

Вывод базы Б фототранзистора иногда используется для подачи смещения при выборе рабочей точки на входной и выходной характеристиках транзистора и обеспечения ее температурной стабилизации.

Семейство выходных характеристик фототранзистора в схеме с ОЭ приведено на Рис.2.в. Фототок образован генерируемыми в области базы неравновесными носителями.

Характеристики фототранзистора.

Световая характеристика фототранзистора - это зависимость тока коллектора от светового потока Iк=f(Ф). Она линейна только при малых потоках. С увеличением светового потока и ростом концентрации неравновесных носителей в базе повышается вероятность их рекомбинации, снижаются коэффициенты переноса, и инжекции фототранзистора. Прямо пропорциональная зависимость коллекторного тока от светового потока нарушается.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действияРис. 3

Большинство параметров биполярного фототранзистора аналогично по физическому смыслу параметрам фотодиодов. Кроме того, фототранзистор характеризуется рабочим напряжением питания, емкостями переходовСк и Сэ, статическим коэффициентом усиления по току и другими параметрами обычного транзистора.

Вольт-амперные характеристики фототранзистора (Рис.3) напоминают выходные характеристики обычного транзистора в схеме ОЭ, но параметром здесь служит не ток IК, а световой поток Ф.

Крутой начальный участок этих характеристик соответствует режиму насыщения: при малых Uкэ коллекторный переход, как и в биполярном транзисторе, за счет накопления дырок в коллекторе открывается. Об этом говорит сайт https://intellect.icu . Наклон характеристик к оси абсцисс в их пологой части объясняется, так же как и для биполярного транзистора, эффектом модуляции ширины базы.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действияРис. 4

Частотные свойства фототранзисторов определяются в основном диффузионным движением носителей в базе прибора и процессами заряда емкостей переходов.

С увеличением частоты модуляции светового потока фототок уменьшается так же, как и в фотодиодах (Рис.4).

Одним из важнейших параметров фототранзистора служит коэффициент усиления по фототоку фототранзистора (Куф) - отношение фототока коллектора фототранзистора при отключенной базе к фототоку освещаемого р-n перехода, измеренному в диодном режиме:

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия, (3)

Токовая чувствительность фототранзистора - это отношение изменения электрического тока на выходе фототранзистора к изменению потока излучения при холостом ходе на входе и коротком замыкании на выходе по переменному току. Для схемы с общим эмиттером токовая чувствительность равна:

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия (4)

Эмиттерный переход биполярного фототранзистора включен в прямом направлении. Его удельная емкость около 105 Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия. Постоянная времени заряда емкости эмиттерного перехода увеличивается с ослаблением интенсивности светового потока. При малых световых потоках она определяет в основном инерционность фототранзистора. При больших световых потоках на инерционность фототранзистора влияют время диффузии носителей в базе и емкость коллекторного перехода. Поэтому для фототранзистора выбирают материалы с высокой подвижностью носителей, используют структуру с внутренним электрическим полем в базе или с тонкой базой. Уменьшать емкость коллекторного перехода снижением концентрации примесей в области коллектора удается лишь до некоторого предела. Сокращать для этой цели площадь эквивалентного фотодиода нецелесообразно, так как при этом падает чувствительность фототранзистора.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

Рис. 5

Для повышения чувствительности фототранзистора следует увеличивать толщину базы,время жизни носителей в базе и, следовательно, выбирать материалы с высоким удельным сопротивлением. Но для повышения его граничной частоты толщину базы и время жизни носителей необходимо уменьшать. Разрешает противоречие между быстродействием и чувствительностью структура фотодиод - транзистор, эквивалентная схема которой показана на Рис.5. Оба элемента структуры изготовлены в одном кристалле. Параметры фотодиода выбирают из условий достижения максимальной чувствительности и быстродействия, а параметры транзистора - максимальной граничной частоты и усиления. В совокупности оба элемента эквивалентны быстродействующему фототранзистору с высоким коэффициентом усиления

Полевой фототранзистор.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

Рис.6

Устройство и схема включения полевого фототранзистора с управляющим р-n переходом показаны на Рис.6.а

где: 1 - просветляющее покрытие;

2 - диэлектрический слой;

3 - область истока n+ - типа;

4 - канал n- типа;

5 - область затвора р- типа;

6 - стоковая область n+ - типа;

7 - выводы прибора;

Rн - резистор нагрузки в цепи затвора;

Rн.тр - резистор нагрузки фототранзистора.

Световой поток генерирует неравновесные носители в области затвора 3 и р-n перехода затвор-канал. Электрическое поле этого перехода разделяет неравновесные носители. В цепи затвора появляется фототок Iф. Он создает на резисторе Rн падение напряжения:

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия (5)

Напряжение на затворе увеличивается, ток стока изменяется на:

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия, (6)

где S - крутизна стокозатворной характеристики полевого транзистора. Проводимость канала возрастает, и соответственно уменьшается напряжение стока на:

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия, (7)

Изменение напряжения стока является выходным электрическим сигналом схемы. Таким образом, полевой фототранзистор эквивалентен фотодиоду “затвор-канал” и усилительному полевому транзистору с управляющим р-n переходом (Рис.6.б).

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действияРис.7

В эквивалентной схеме полевого фототранзистора (Рис.7) источники Iфи и Iфс моделируют фототоки р-n переходов “исток-затвор” и “сток-затвор”; источник SUз - усиление в транзисторе; резистор rДИФ - дифференциальное выходное сопротивление транзистора; резисторы Rи, Rc и конденсаторы Си, Сс учитывают сопротивление и емкости переходов между областями “исток-затвор”, “сток-затвор”. Резисторы Rпс, Rпи, R`пс, R`пи с учетом сопротивления омических контактов определяют последовательно включенные сопротивления областей между выводом затвора и областью стока, выводом затвора и областью истока, выводом истока и областью затвора, выводом стока и областью затвора. Для источника тока в выходной цепи фототранзистора можно записать:

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия, (8)

где Iф.к. - фототок p-n перехода “канал-затвор”.

При коротком замыкании цепи “затвор-исток” объемные сопротивления Rпu, R`пи, Rпс выполняют роль резисторов нагрузки. Постоянными времени (Rпи+R`пи)Cи и (Rпс+R`пс)Cс, а также временем пролета носителей в канале определяется предельное быстродействие фототранзистора.

Параметры полевого фототранзистора аналогичны по физическому смыслу параметрам биполярного.

Структуры полевых транзисторов с р-n переходом и МОП фототранзисторов многообразны. Наибольшие быстродействие и чувствительность у структуры фотодиод - полевой транзистор. Фотодиод совмещен с областью истока полевого транзистора - усилительного элемента. Каждая из составляющих структуры оптимизирована: фотодиод - по чувствительности и быстродействию, полевой транзистор - по граничной частоте и усилению.

Сравнительная оценка параметров фототранзисторов показывает, что наибольшая чувствительность у составного фототранзистора, а максимальное быстродействие при хорошей чувствительности у структуры фотодиод - биполярный транзистор (ФД-БТ). Структура фотодиод - полевой транзистор имеет параметры, близкие к параметрам структуры ФД-БТ. Фототранзисторы уступают фотодиодам по быстродействию, но за счет усиления сигнала имеют высокую чувствительность.

Свойство усиления

Фототранзисторы имеют рабочий диапазон, размер которого зависит от интенсивности падающего света, так как это связано с положительным потенциалом его базы.

Ток базы от падающего света подвергается усилению в сотни и тысячи раз. Дополнительное усиление тока обеспечивается особым транзистором Дарлингтона, который представляет собой полупроводник, эмиттер которого соединен с базой другого биполярного транзистора. На схеме изображен такой вид фототранзистора.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

Это дает возможность создать повышенную чувствительность при слабом освещении, так как происходит двойное усиление двумя полупроводниками. Двумя транзисторами можно добиться усиления в сотни тысяч раз. Необходимо учитывать, что транзистор Дарлингтона медленнее реагирует на свет, в отличие от обычного фототранзистора.

Схемы подключения биполярных фототранзисторов

Схема с общим эмиттером

По этой схеме создается сигнал выхода, переходящий от высокого состояния в низкое, при падении лучей света.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

Эта схема выполнена с помощью подключения сопротивления между коллектором транзистора и источником питания. Напряжение выхода снимают с коллектора.

Схема с общим коллектором

Усилитель, подключенный с общим коллектором, создает сигнал выхода, переходящий от низкого состояния в высокое, при попадании света на полупроводник.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

Эта схема образуется подключением сопротивления между отрицательным выводом питания и эмиттером. С эмиттера снимается выходной сигнал.

В обоих вариантах транзистор может работать в 2-х режимах:

  1. Активный режим.
  2. Режим переключения.

Активный режим

В этом режиме фототранзистор создает сигнал выхода, зависящий от интенсивности падающего света. Когда уровень освещенности превосходит определенную границу, то транзистор насыщается, и сигнал на выходе уже не будет повышаться, даже если увеличивать интенсивность лучей света. Такой режим действия рекомендуется для устройств с функцией сравнения двух порогов потока света.

Режим переключения

Действие полупроводника в этом режиме значит, что транзистор будет реагировать на подачу света выключением или включением. Такой режим необходим для устройств, в которых необходимо получение выходного сигнала в цифровом виде. Путем изменения значения резистора в схеме усилителя, можно подобрать один из режимов функционирования.

Для эксплуатации фототранзистора в качестве переключателя чаще всего применяют сопротивление более 5 кОм. Напряжение выхода повышенного уровня в переключающем режиме будет равно питающему напряжению. Напряжение выхода малого уровня должно равняться менее 0,8 В.

Проверка фототранзистора

Такой транзистор легко проверяется мультитестером, даже без наличия базы транзистора. Если подключить мультитестер к участку эмиттер-коллектор, то его сопротивление при любой полярности будет большим, так как транзистор закрыт. Если луч света попадает на чувствительный элемент, то измерительный прибор покажет низкое значение сопротивления, так как транзистор в этом случае открылся, благодаря свету, при правильной полярности питания.

Так ведет себя обычный транзистор, но он открывается сигналом электрического тока, а не лучом света. Кроме силы света, большую роль играет спектральный состав света.

Конструкция корпусов

Приборы, предназначенные для приема внешнего излучения заключают в пластмассовый, металлостеклянный или металлокерамический корпус с прозрачным окошком или линзой, изготовленных из пластмассы или стекла. Исключение составляют фототранзисторы, входящие в состав оптронов, заключенные совместно с источником излучения в непрозрачный корпус.

Приборы, оформленные в металлостеклянных и металлокерамических корпусах, обычно имеют электрический вывод базы.

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действияФототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действияФототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

Сдвоенный фототранзистор

Преимущества и Недостатки фототранзисторов

Преимущества фототранзисторов

  • Выдают ток больше, чем фотодиоды.
  • Способны создать мгновенную высокую величину тока выхода.
  • Основное достоинство – способность создания повышенного напряжения, в отличие от фоторезисторов.
  • Невысокая стоимость.

Недостатки фототранзисторов

Фототранзисторы являются аналогом фотодиодов, однако имеют серьезные недостатки, которые создают условия для узкой специализации этого полупроводника.

  • Многие виды фототранзисторов изготавливают из силикона, поэтому они не могут работать с напряжением более 1 кВ.
  • Такие светочувствительные полупроводники имеют большую зависимость от перепадов напряжения питания в электрической цепи. В таких режимах фотодиод ведет себя гораздо надежнее.
  • Фототранзисторы не сочетаются с работой в лампах, по причине малой скорости носителей заряда

Применение фототранзисторов

Фототранзисторы биполярные и полевые, обозначение на схемах, устройство и принцип действия

Оптопара с составным транзистором фототранзистор-транзистор по схеме Дарлингтона

Так как фототранзисторы более чувствительны чем фотодиоды их удобно применять в качестве приемников излучения в различных системах автоматики безопасности, системах охранной сигнализации, считывателях перфокарт и перфолент, датчиках положения и расстояния и др. применениях, где некритично быстродействие.

Часто фототранзисторы применяют в оптопарах в качестве приемников излучения в оптронах.

так же фототранзисторы применяются в

  • Системы охраны (чаще применяются инфракрасные ф-транзисторы).
  • Фотореле.
  • Системы расчета данных и датчики уровней.
  • Автоматические системы коммутации осветительных приборов (также применяются инфракрасные ф-транзисторы).
  • Компьютерные управляющие логические системы.
  • Кодеры.

Вау!! 😲 Ты еще не читал? Это зря!

Исследование, описанное в статье про фототранзисторы, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое фототранзисторы, фототранзистор и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база

создано: 2020-05-11
обновлено: 2021-10-08
132265



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей



Комментарии

Сергей
20-06-2023
не могу найти какие токи у фототранзисторов видимого диапазона

Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Электроника, Микроэлектроника , Элементная база

Термины: Электроника, Микроэлектроника , Элементная база