Лекция
Привет, Вы узнаете о том , что такое голографические запоминающие устройства, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое голографические запоминающие устройства , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база.
в последние несколько лет человечество ежегодно накапливает около 5 экзабайт (1018 байт) информации, и темпы продолжают расти. Это требует создания все более емких, быстрых и надежных устройств для хранения данных. Одно из многочисленных направлений разработок использует методы оптической голографии. Успехи в этой области таковы, что на рынке уже появились первые коммерческие продукты.
Рис. 1. История и перспективы развития запоминающих устройств (по данным IBM). Здесь AFM (Atomic Force Microscopy) – методы микроскопии на атомном уровне, которые можно использовать для записи информации. Накопители на атомном уровне включают и атомную голографию
голографические запоминающие устройства , устройства, в которых используется голографический способ записи, хранения и воспроизведения информации. Информация в голограмме может храниться либо в виде полутонового изображения, либо в дискретном виде как набор данных в двоичном коде. Разработка и создание голографических запоминающих устройств ведутся с 1970-х годов во многих странах.
В голографических запоминающих устройствах обычно отдельно осуществляются две операции:
1) ввод информации в виде изображения объекта или набора данных и хранение ее в виде голограмм;
2) выборка информации в виде изображения или отдельного светового сигнала.
Ввод и хранение могут быть однократными или многократными с полным или частичным стиранием ранее записанной информации. Выборка практически всегда многократна. Вследствие доступности осуществления наложения (мультиплексирования) голограмм при записи в плоских и особенно в объемных средах в голографических запоминающих устройствах достигнута очень высокая плотность записи световой информации (порядка 4·108 бит/мм2 при выборке информации за время порядка 10-3 с).
Основными компонентами голографических запоминающих устройств (рис.) являются лазер, блок ввода информации (как правило, пространственно-временной модулятор света, ПВМС), среда, содержащая матрицу голограмм (МГ), и блок вывода информации (например, матрица фотодетекторов, МФД). Кроме того, в голографических запоминающих устройствах используются дефлекторы (Д), обеспечивающие смещение пучков света по поверхности записывающей среды, расщепитель пучка (РП) на объектный и опорный пучки, дефлекторы, отклоняющие опорные пучки, и устройства, управляющие их структурой (УУОП) (при мультиплексировании), а также оптические и механические элементы.
Число пикселов Np, содержащихся в изображении или в наборе данных и параллельно вводимых в голограммы через ПВМС, должно соответствовать числу пикселов, воспринимаемых МФД. Число голограмм Nh, хранящихся в блоке МГ, жестко не связанное с числом пикселов в ПВМС и МФД, является произведением Ns - числа участков поверхности среды, на которых последовательно записываются голограммы, и NM - числа мультиплексированных голограмм, последовательно записываемых на одном участке. Общее количество информации I, которую вводят одновременно и последовательно через ПВМС, определяется величиной I = NpNhNMlog2(m + 1), где m - число градаций в полутоновом изображении, если хранится набор изображений. В случае двоичной информации, когда m=1, имеем I = NpNhNM. Скорость вывода данных определяется величиной vout = Npn, где n - число голограмм, которое можно считать в секунду. Большие величины Np и Nм, достигаемые в голографических запоминающих устройствах, ставят их на более высокий уровень по сравнению с другими запоминающими устройствами.
На рисунке показана возможность последовательной мультиплексной записи голограмм за счет изменения угла между объектным (О) и опорными (R1, R2, R3) пучками. Мультиплексирование можно осуществить также за счет изменения длины волны, фазового распределения опорного пучка и другими способами. Существенную роль в блоке хранения информации играет записывающая среда. Разработаны новые голографические среды (в частности, фотополимерные), позволяющие существенно расширить область применения голографических запоминающих устройств. Предлагают использовать голографические диски с объемом информации порядка 1,6 Тбайт вместо существующих DVD, а также модернизованные голографические устройства в памяти мобильных телефонов.
Фирма IBM исследовала историю и перспективы развития запоминающих устройств (ЗУ) с точки зрения поверхностной плотности записи (рис. 1). Очевидно, что существует только один путь преодолеть суперпарамагнитный порог – использовать немагнитные методы записи. Самым перспективным и разработанным из них является голография.
Голографическая память развивается, начиная с работ Питера ван Хеердена (Pieter J. Van Heerden), сотрудника фирмы Polaroid. Он предложил идею хранения данных в трех измерениях еще в 1963 г., а сегодня некоторые производители уже приступили к коммерческому выпуску голографических ЗУ.
Используемая технология позволяет записать и прочитать миллионы бит данных за одну вспышку лазера. Предельная объемная плотность информации N (N ~ λ3 ~ ~ 1012 bit/cm3) определяется длиной волны излучения.
Тысячи голографических страниц могут быть сохранены в одном и том же объеме записывающей среды с помощью различных вариантов мультиплексирования. Об этом говорит сайт https://intellect.icu . Его можно выполнить за счет изменения угла падения лучей лазера, длины его волны, фазы опорного луча пространственного изменения точки входа информационного и опорного лучей в среду записи при ее сдвиге или вращении, а также комбинации всех этих способов.
Рис. 2. Сравнение оптических и голографических методов записи
Рис. 3. Принцип голографической записи
Рис. 4. Схема записи/чтения данных методом голографии
Достоинства голографической памяти: высокая плотность записи и большая скорость чтения; параллельная запись информации (не по одному биту, а целыми страницами, рис. 2); высокая точность воспроизведения страницы; низкий уровень шума при восстановлении данных; неразрушающее чтение; длительный срок хранения данных – 30–50 и более лет; конкурентоспособность с другими оптическими технологиями.
Принцип голографической записи показан на рис. 3. Луч одного лазера (на рисунке не изображен) расщепляется на два луча. Один из них используется как опорный, а другим освещается объект (или его пропускают через пространственный оптический модулятор, в котором помещена прямоугольная таблица данных) – это луч, содержащий данные. При пересечении в определенной области пространства эти лучи создают интерференционную картину (рис. 3,1). Если в эту область поместить прозрачный фоточувствительный носитель (рис. 3,2), то в нем сохранится интерференционная картина (голограмма) (рис. 3,3) – данные будут записаны. Для чтения достаточно осветить носитель опорным лучом, и после их взаимодействия мы получим луч с точной копией записанных данных. В отличие от обычной фотографии информация содержится в большом объеме носителя. Если этот объем разделить, например, на пять частей, то выйдет пять идентичных копий записанной информации. Это свойство значительно повышает надежность хранения данных. Детальная схема устройства голографической записи/чтения представлена на рис. 4.
Технология голографической памяти не имеет ограничений обычных оптических за счет применения трехмерной записи данных, а не двумерных чтения и записи лазерным лучом на плоскости. Это означает, что теоретически для записи данных в голографической памяти может использоваться полный объем кристалла, хотя есть и практические ограничения. Однако и с ограничениями трехмерный носитель – существенное преимущество для технологии голографической памяти. Его возможности достаточны, чтобы оставить далеко позади DVD и Blu-ray. Скорости передачи данных могут достигать 1 GBps и более. Это намного быстрее любой другой оптической технологии типа CD, DVD, HD DVD и Blu-ray, где максимальная скорость передачи не превышает 11 MBps.
Теоретически голограммы могут хранить 1 бит в объеме, который равен кубу длины волны лазера. Например, красный луч лазера на смеси неона и гелия имеет длину волны 632,8 нм, и совершенная голографическая память могла бы хранить 4 Gb в кубическом миллиметре. В действительности же плотность записи данных намного ниже, чему есть, по крайней мере, четыре причины: необходимость коррекции ошибок, недостатки и ограничения оптической системы, экономические (с увеличением плотности записи стоимость растет непропорционально быстрее) и физические ограничения (конечность длины волны лазера, междуатомного расстояния в кристалле записи и несовершенство оптических систем).
Рис. 5. Фотополимер запоминает информацию при освещении лучом лазера
Одна из главных проблем в области хранения голографической информации – создание подходящих материалов для записи. Голографические носители должны удовлетворять строгим критериям, включая расширенный динамический диапазон, высокую фоточувствительность, безусадочность, оптическую прозрачность, неразрушающее считывание, термо- и влагостойкость, а также иметь низкую цену. Разработчики нашли множество материалов: фазовращающие материалы, фоторефрактивные кристаллы типа LiNbO3, органические полимеры, жидкие кристаллы, полимеры со структурной поверхностью и даже такие экзотические среды, как бактериородопсины в желатиновых матрицах. Самые дешевые в производстве – фотополимеры. При освещении участка полимера поляризованным светом его молекулы ориентируются и надолго сохраняют такое состояние (рис. 5).
Рис. 6. Варианты применения голографической памяти: голографические запоминающие устройства
Возможные применения голографических запоминающих устройств представлены на рис. 6.
Работы по созданию голографической памяти начались более 40 лет назад, и сегодня ряд компаний, например NTT и Optware в Японии, InPhase Technology в США, имеют законченные разработки с голографическими дисками (Holographic Versatile Disc – HVD) и картами (Holographic Versatile Card – HVC), и наконец приступают к продаже своих первых коммерческих приборов. Рассмотрим несколько голографических устройств, уже вышедших на рынок.
Рис. 7. Голографическая карта Info-MICA (сверху), устройство чтения (по середине) и относительный размер (снизу)
Компания NTT продемонстрировала прототип накопителя высокой емкости, в основу которого положена технология многослойной тонкопленочной голографии, и устройство для считывания данных (рис. 7). Емкость носителя (сто слоев) размерами с почтовую марку – 1 Gb. Новая карта памяти была названа Info-MICA (Information-Multilayered Imprinted CArd), так как ее многослойная структура похожа на структуру породы слюды. Запись информации производится следующим образом. Сначала цифровые данные перекодируются в двухмерные изображения, которые затем преобразуются в голограмму с помощью технологии CGH (Computer Generated Hologram), и наконец эти голограммы записываются в виде особых структур на слоях носителя. Слои представляют собой волноводы. Когда луч лазера фокусируется на торце такого волноводного слоя, он начинает распространяться по нему, рассеиваясь на записанных структурах. Рассеянный свет формирует двухмерные изображения в плоскости, параллельной волноводному слою. Они захватываются CCD-сенсорами и декодируются в исходные цифровые данные.
Достоинства новой технологии Info-MICA состоят в высокой плотности записи, малых размерах дисковода, низком энергопотреблении, возможности дешевого массового производства носителей, трудности несанкционированного копирования данных с них и простоте утилизации.
В NTT полагают, что Info-MICA вследствие их дешевизны и малых размеров могут заменить другие устройства ROM. Рассматривают их и как заменитель бумаги в качестве носителя информации. Эти карты будут полезны при массовом распространении игр, музыки, кинофильмов и электронных изданий, поскольку клонирование их пиратами затруднено. Предполагаются и многие другие применения новой технологии.
Первые кард-ридеры (стоимостью несколько сот долларов) и носители емкостью 1 Gb ($1–2) уже появились на рынке. В планах компании – выпуск Info-MICA ROM емкостью 10 Gb и разработка устройств записи и перезаписи носителей.
Рис. 8. Схема оптики для голографической записи/чтения данных фирмы InPhase Technology
Рис. 9. Голографический накопитель HDS-300R фирмы InPhase Technology
Схема голографического устройства фирмы InPhase показана на рис. 8. Как видим, здесь применена классическая схема с двумя неколлинеарными лучами.
Первый дисковод типа Tapestry HDS-300R (рис. 9) оборудован встроенной системой радиоидентификации (RFID) и использует диски 300 GB с однократной записью, предназначенные для профессионального архивирования. Он имеет SCSI-интерфейс со скоростью передачи 20 MBps, среднее время доступа 250 мс. Длина волны лазера – 407 нм, объем страницы – 1,4 Mb, вероятность ошибки не превышает 10-15. Среднее время безотказной работы – 100 000 ч. Носителем служит диск 130 мм, размещенный в картридже размером 5,25×6×0,25", срок хранения записи – до трех лет, архивного хранения – более 50 лет.
В ближайшей перспективе – создание конструкции с многократной перезаписью. InPhase сообщает, что к 2009 г. емкость дисков будет доведена до 1,6 TB. Планируется также выпуск других изделий, подобных носителю 2 GB также размером с почтовую марку, и устройства размером с кредитную карточку емкостью 210 GB.
Хотя Optware в настоящее время не является лидером рынка, ее технология может очень скоро получить широкое признание, так как в голографические накопители заложена совместимость с DVD-дисками, физическое кодирование дисков, возможность использования голографической памяти как альтернативы флэш-памяти в таких устройствах, как сотовые телефоны и видеокамеры.
Рис. 10 . Схема коллинеарной голографической записи/чтения (при чтении включают только опорные лучи)
В то время как для других систем требуются два отдельных луча – данных и опорного, в Optware лучи коллинеарные (рис. 10), что значительно упрощает конструкцию системы чтение/запись, повышает ее надежность, а также снижает стоимость.
Эта так называемая коллинеарная система может использовать предварительно форматированные диски с адресными метками на поверхности гальванического покрытия, подобно технологиям CD и DVD. В то время как зелено-голубой лазер читает и записывает данные, лазер, генерирующий в красной области спектра, гарантирует прецизионное позиционирование. Система позиционирования сервопривода настолько подобна стандартному DVD, что дисководы Optware способны работать с дисками обоих типов. Коллинеарная технология также удобна для физического кодирования дисков, что позволит значительно повысить степень защиты авторских прав.
Группа японских, европейских и американских компаний, возглавляемая корпорацией Sony, проявляет немалый интерес к данным решениям. Еще в 2004 г. представители Sony заказали у Optware оборудование для поддержки коллинеарной технологии, намереваясь оценить перспективы дальнейшего развития голографической записи и производства дисков с использованием голубого лазера.
«Специалисты Sony и других ведущих японских компаний, работающих в области электроники, внимательно изучают особенности голографической технологии, которая должна прийти на смену HD DVD и дискам Blu-ray, – сообщил менеджер Optware по маркетингу и развитию бизнеса Ясухиде Кагеяма. – В Sony уже сейчас готовы приступить к созданию систем хранения послезавтрашнего дня, и должен отметить, что наше коллинеарное решение вызвало большой интерес».
Первое коммерческое изделие Optware, HVD Pro Series 1000 MAGNUM (рис. 11), будет хранить 200 GB на диске, очень похожем на DVD и фактически совместимом с ним. Компания экспериментально проверила голографический дисковод емкостью до 3,9 TB при скорости передачи 1 Gbps. Optware обещает, что сегодняшние дисководы смогут читать диски с емкостью вплоть до 3,9 TB. Компания представила свою систему HVD в Европейскую ассоциацию производителей компьютеров (European Computer Manufacturers Association) для стандартизации и собирается представить ее в Международную организацию по стандартам (International Standards Organization – ISО).
Тем временем и Optware, и InPhase выпустили свои устройства на коммерческий рынок. Стоимость дисководов приблизительно 12 000–15 000 долл., а голографических дисков – $120–150. Архивный ресурс гарантируется в течение 50 лет.
Акаев А. А., Гуревич С. Б., Жумалиев К. М. Ввод и хранение информации в голографической памяти. Бишкек; СПб., 2002.
Исследование, описанное в статье про голографические запоминающие устройства, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое голографические запоминающие устройства и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база
Комментарии
Оставить комментарий
Электроника, Микроэлектроника , Элементная база
Термины: Электроника, Микроэлектроника , Элементная база