Вам бонус- начислено 1 монета за дневную активность. Сейчас у вас 1 монета

Computational Neuroscience (вычислительная нейронаука) Введение

Лекция



Привет, сегодня поговорим про computational neuroscience вычислительная нейронаука введение, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое computational neuroscience вычислительная нейронаука введение , настоятельно рекомендую прочитать все из категории Computational Neuroscience (вычислительная нейронаука) Теория и приложения искусственных нейронных сетей.

Введение в предмет Computational Neuroscience (вычислительная нейронаука). Истоки нейронауки: достижения биологии и физиологии, психологии, дискретная математики, кибернетики, статистической физики и синергетики. Роль компьютерного моделирования. Философские основания нейронауки. Исторический обзор. Структура курса. Учебная и ознакомительная литература.

"Подмигните компьютеру - он поймет". В начале 90-х под таким заголовком в старейшей уважаемой газете Нью-Йорк Таймс появилась статья, рассказывающая о современных достижениях и направлениях в области интеллектуальных компьютерных систем. Среди магистральных путей развития данной отрасли эксперты издания выделили

  • Компьютеры с высокой степенью параллелизма обработки информации, которые могут разделить ту или иную задачу на части и обрабатывать их одновременно, тем самым значительно сокращая общее время вычислений;
  • Компьютеры, в которых вместо электронных сигналов для передачи информации используется оптика. Оптические сигналы уже начали использоваться для передачи данных между компьютерами;
  • Компьютеры с нейронными сетями, представляющие собой машины, работающие аналогично тому, как по нашим современным представлениям, функционирует мозг.

Последнее, третье, направление, которое существенно опирается на первые два, и составляет основную тему предлагаемого курса Лекций. При этом курс сфокусирован лишь на одном из разделов направления искусственных нейронных сетей, а именно, на нейроинформатике, как науке, изучающей нейроподобные способы обработки информации при помощи компьютеров.

Разнообразие, большой об'ем и противоречивость различной диагностической информации выводят на передний план проблему поиска физических систем, способных к ее переработке. Решение этой комплексной задачи тесно связано с новыми информационными технологиями, важное место среди которых занимают методы распознавания и категоризации образов. Нейронные сети - мощный и на сегодня, пожалуй, наилучший метод для решения задач распознавания образов в ситуациях, когда в экспериментальных данных отсутствуют значительные фрагменты информации, а имеющаяся информация предельно зашумлена. Высокая степень параллельности, допускаемая при реализации нейросистем, обеспечивает обработку недоступных оператору об'емов информации за времена, меньшие или сравнимые с допустимыми временами измерений.

К рубежу 80-х годов были достигнуты значительные результаты в совсем молодой синергетике, науке о самоорганизации в неравновесных системах; систематизированы факты и проведены многочисленные новые эксперименты в нейрофизиологии, в частности, подробно изучено строение и механизм действия отдельных нейронов; сформулирован принцип работы и создана первая ЭВМ с параллельной архитектурой. Эти обстоятельства, по-видимому, стимулировали начало интенсивных исследований нейронных сетей, как моделей ассоциативной памяти.

Широкий интерес к нейронным сетям был инициирован после появления работы Хопфилда (Hopfield J.J., 1982), который показал, что задача с изинговскими нейронами может быть сведена к обобщениям ряда моделей, разработанных к тому моменту в физике неупорядоченных систем. Об этом говорит сайт https://intellect.icu . Работа сети Хопфилда (наиболее подробно обсуждаемая в физической литературе) состоит в релаксации начального "спинового портрета" матрицы двоичных кодов к одному из стационарных состояний, определяемых правилом обучения (правилом Хебба). Таким образом, данная сеть может применяться для задач распознавания.

В 1986 году появилась работа Румельхарта, Хинтона и Вильямса (Rumelhart D.E., Hinton G.E., Williams R.J., 1986), содержавшая ответ на вопрос, долгое время сдерживавший развитие нейроинформатики - как обучаются иерархические слоистые нейронные сети, для которых "классиками" еще в 40-50 х годах была доказана универсальнось для широкого класса задач. В последующие годы предложенный Хинтоном алгоритм обратного распространения ошибок претерпел бесчисленное множество вариаций и модификаций.

Многообразие предлагаемых алгоритмов, характеризующихся различной степенью детальности проработки, возможностями их параллельной реализации, а также наличием аппаратной реализации, приводит к особой актуальности исследования по сравнительным характеристикам различных методик.

Нейронаука в современный момент переживает период перехода от юного состояния к зрелости. Развитие в области теории и приложений нейронных сетей идет в самых разных направлениях: идут поиски новых нелинейных элементов, которые могли бы реализовывать сложное коллективное поведение в ансамбле нейронов, предлагаются новые архитектуры нейронных сетей, идет поиск областей приложения нейронных сетей в системах обработки изображений, распознавания образов и речи, робототехники и др. Значительное место в данных исследованиях традиционно занимает математическое моделирование.

Необходимость написания систематического курса по теории нейронных сетей и вычислительным системам на их основе во многом определяется отсутствием отечественных учебных монографий по этой теме. Кроме того, сама эта тема пока не заняла свое место в традиционных курсах университетов и ВУЗов. И хотя промышленные эксперты американского Управления перспективных исследований DARPA ожидают начало массового распространения новой нейросетевой технологии в конце 90-х годов, уже сегодняшний уровень теоретического понимания и практического использования нейронных сетей в мировой информационной индустрии все явственнее требует профессиональных знаний в этой области.

Главной задачей предлагаемого курса является практическое введение в современные методы и системы обработки информации, об'единенные в научной литературе термином Computational Neuroscience (вычислительная нейро-наука), а также введение в перспективные подходы построения вычислительных и информационных систем новых поколений. Особенностью рассматриваемой нами темы является ее междисциплинарный характер. Свой вклад в становление нейронауки внесли биологияи физиология высшей нервной деятельности, психология восприятия, дискретная математика, статистическая физика и синергетика, и, конечно, кибернетика и, конечно, компьютерное моделирование.

Лекции содержат основную информацию о принципах организации естественных (биологических) нейронных сетей и их математических моделей - искусственных нейронных сетей, необходимую для синтеза нейросетевых алгоритмов для практических задач. Для этой цели в книгу включены две вводные темы - математическое введение (Лекция 2) и вводные биологические сведения (Лекция 3). Формальное математическое наполнение курса сведено к минимуму и опирается на базовые знания по курсам линейной алгебры и дифференциальных уравнений. Поэтому он может быть рекомендован и, в основном, предназначен для струдентов инженерных специальностей, а также математиков-прикладников и программистов.

Основные разделы курса

  • Введение, сведения из биологии, физиологии высшей нервной деятельности, психологии, кибернетики, статистической физики и дискретной математики;
  • Биологический нейрон и его математическая модель;
  • ПЕРСЕПТРОН, линейная разделимость и теорема Розенблатта об обучении;
  • Обучение нейронной сети, как задача комбинаторной оптимизации;
  • Правило Хебба, модель Хопфилда и ее обобщения;
  • Иерархические нейронные сети;
  • Алгоритм обратного распространения ошибок;
  • Модели Липпмана-Хемминга, Хехт-Нильсена, Коско;
  • Способы представления информации в нейронных сетях;
  • Современные нейросетевые архитектуры, КОГНИТРОН и НЕОКОГНИТРОН Фукушимы;
  • Теория адаптивного резонанса;
  • Алгоритмы генетического поиска для построения топологии и обучениия нейронных сетей;
  • Адаптивный кластерный анализ и карта самоорганизации Кохонена;
  • Конечные автоматы и нейронные сети;
  • Заключение - современные день нейронауки, нейро-ЭВМ шестого поколения, нейропроцессоры, математическое обеспечение, научные и коммерческие приложения.

Литература

А. Основная

  • Ф. Уоссермен. Нейрокомпьютерная техника. Москва: Мир, 1992.
  • А.Н. Горбань, Д.А. Россиев. Нейронные сети на персональном компьютере. Новосибирск: Наука, 1996.
  • Информатика. Справочник. Под. Ред. Д.А.Поспелова. Москва: Педагогика, 1996.

Б. Дополнительная

  • Т. Кохонен. Ассоциативная память. Москва: Мир, 1980.
  • Ф. Розенблатт. Принципы нейродинамики. Москва: Мир, 1965.
  • Автоматы. Под. ред. К.Э. Шеннона и Дж. Маккарти. Москва: Издательство Иностранной Литературы, 1956.
  • Д. Марр. Зрение. Москва: Радио и Связь, 1987.
  • М. Минский, С. Пейперт. Персептроны. Москва: Мир, 1971.
  • Н. Винер. Кибернетика. Москва: Советское радио, 1968.
  • А.А. Веденов. Моделирование элементов мышления. Москва: Наука, 1988.
  • А.Ю. Лоскутов, А.С. Михайлов. Введение в синергетику. Москва: Наука, 1990.
  • С.О. Мкртчян. Нейроны и нейронные сети. Москва: Энергия, 1971.
  • А.Н. Горбань. Обучение нейронных сетей. Москва: СП "Параграф", 1990.
  • А.И. Галушкин. Синтез многослойных схем распознавания образов. Москва: Энергия, 1974.
  • Ф.Г. Гантмахер. Теория матриц. Москва: Наука, 1988.
  • Н. Грин, У. Стаут, Д. Тейлор. Биология. Под.ред. Р.Сопера. Т.1-3, Москва: Мир, 1990.
  • Г. Шеперд. Нейробиология. Тт. 1-2, Москва: Мир, 1987.
  • Ф. Блум, А. Лейзерсон, Л. Хофстедтер. Мозг, разум и поведение. Москва: Мир, 1988.
  • Б. Банди. Методы оптимизации. М. Радио и связь, 1988
Замечание к электронному варианту 1998 г. За прошедшие 5 лет с момента написания Лекций в Российской нейроинформатике произошли значительные изменения. Разнообразные курсы по нейронным сетям начали повсеместно входить в программы высшей школы для различных технических специальностей. Появились и, немногочисленные пока, учебники, среди которых в первую очередь следует отметить книгу А.Н. Горбаня и Д.А. Россиева (1996). Увы, тираж в 500 экземпляров не позволяет рассматривать это превосходное (хотя и относительно сложное) издание в качестве базового учебника.
 

В общем, мой друг ты одолел чтение этой статьи об computational neuroscience вычислительная нейронаука введение. Работы впереди у тебя будет много. Смело пиши комментарии, развивайся и счастье окажется в твоих руках. Надеюсь, что теперь ты понял что такое computational neuroscience вычислительная нейронаука введение и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Computational Neuroscience (вычислительная нейронаука) Теория и приложения искусственных нейронных сетей

создано: 2016-01-16
обновлено: 2024-11-14
264



Рейтиг 9 of 10. count vote: 2
Вы довольны ?:


Поделиться:

Найди готовое или заработай

С нашими удобными сервисами без комиссии*

Как это работает? | Узнать цену?

Найти исполнителя
$0 / весь год.
  • У вас есть задание, но нет времени его делать
  • Вы хотите найти профессионала для выплнения задания
  • Возможно примерение функции гаранта на сделку
  • Приорететная поддержка
  • идеально подходит для студентов, у которых нет времени для решения заданий
Готовое решение
$0 / весь год.
  • Вы можите продать(исполнителем) или купить(заказчиком) готовое решение
  • Вам предоставят готовое решение
  • Будет предоставлено в минимальные сроки т.к. задание уже готовое
  • Вы получите базовую гарантию 8 дней
  • Вы можете заработать на материалах
  • подходит как для студентов так и для преподавателей
Я исполнитель
$0 / весь год.
  • Вы профессионал своего дела
  • У вас есть опыт и желание зарабатывать
  • Вы хотите помочь в решении задач или написании работ
  • Возможно примерение функции гаранта на сделку
  • подходит для опытных студентов так и для преподавателей

Комментарии


Оставить комментарий
Если у вас есть какое-либо предложение, идея, благодарность или комментарий, не стесняйтесь писать. Мы очень ценим отзывы и рады услышать ваше мнение.
To reply

Computational Neuroscience (вычислительная нейронаука) Теория и приложения искусственных нейронных сетей

Термины: Computational Neuroscience (вычислительная нейронаука) Теория и приложения искусственных нейронных сетей