Лекция
Привет, сегодня поговорим про операции в java, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое операции в java , настоятельно рекомендую прочитать все из категории Объектно-ориентированное программирование ООП.
Операции над целыми типами
Все операции, которые производятся над целыми числами, можно разделить на следующие группы.
Арифметические операции
К арифметическим операциям относятся:
Между сдвоенными плюсами и минусами нельзя оставлять пробелы. Сложение, вычитание и умножение целых значений выполняются как обычно, а вот деление целых значений в результате дает опять целое (так называемое "целое деление"), например, 5/2 даст в результате 2, а не 2.5, а 5/(-3) даст -1. Дробная часть попросту отбрасывается, происходит усечение частного. Это поначалу обескураживает, но потом оказывается удобным для усечения чисел.
Замечание
В Java принято целочисленное деление.
Это странное для математики правило естественно для программирования: если оба операнда имеют один и тот же тип, то и результат имеет тот же тип. Достаточно написать 5/2.0 или 5.0/2 или 5.0/2.0 и получим 2.5 как результат деления вещественных чисел.
Операция деление по модулю определяется так: а % b = а - (а / b) * b; например, 5%2 даст в результате 1, а 5% (-3) даст, 2, т.к. 5 = (-3) * (-1) + 2, но (-5)%3 даст -2, поскольку -5 = 3 * (-1) - 2.
Операции инкремент и декремент означают увеличение или уменьшение значения переменной на единицу и применяются только к переменным, но не к константам или выражениям, нельзя написать 5++ или (а + b)++.
Например, после приведенных выше описаний i++ даст -99, a j—- даст 99.
Интересно, что эти операции 'можно записать?и перед переменной: ++i, — j. Разница проявится только в выражениях: при первой формe записи (постфиксной) в выражении участвует старое значение переменной и только потом происходит увеличение или уменьшение ее значения. При второй форме записи (префиксной) сначала изменится переменная и ее новое значение будет участвовать в выражении.
Приведение типов
Результат арифметической операции имеет тип int, кроме того случая, когда один из операндов типа long. В этом случае результат будет типа long.
Перед выполнением арифметической операции всегда происходит повышение (promotion) типов byte,short, char. Они преобразуются в тип int, а может быть, и в тип long, если другой операнд типа long. Операнд типа int повышается до типа long, если другой операнд типа long. Конечно, числовое значение операнда при этом не меняется.
Это правило приводит иногда к неожиданным результатам. Попытка откомпилировать простую программу, представленную в листинге 1.3, приведет к сообщениям компилятора, показанным на рис. 1.3.
Листинг 1.3. Неверное определение переменной
class InvalidDef{
byte b1 = 50, b2 = -99;
short k = b1 + b2; // Неверно! '
System.out.println("k=" + k);
}
}
Эти сообщения означают, что в файле InvalidDef.java, в строке 4, обнаружена возможная потеря точности (possible loss of precision). Затем приводятся обнаруженный (found) и нужный (required) типы, выводится строка, в которой обнаружена (а не сделана) ошибка, и отмечается символ, при разборе которого найдена ошибка. Затем указано общее количество обнаруженных (а не сделанных) ошибок (1 error).
Рис. 1.3. Сообщения компилятора об ошибке
В таких случаях следует выполнить явное приведение типа. В данном случае это будет сужение(narrowing) типа int до типа short. Оно осуществляется операцией явного приведения, которая записывается перед приводимым значением в виде имени типа в скобках. Определение
short k = (short)(b1 + b2);
будет верным.
Сужение осуществляется просто отбрасыванием старших битов, что необходимо учитывать для больших значений. Например, определение
byte b = (byte) 300;
даст переменной b значение 44. Действительно, в двоичном представлении числа 300, равном 100101100, отбрасывается старший бит и получается 00101100.
Таким же образом можно произвести и явное расширение (widening) типа, если в этом есть необходимость. .
Если результат целой операции выходит за диапазон своего типа int или long, то автоматически происходит приведение по модулю, равному длине этого диапазона, и вычисления продолжаются, переполнение никак не отмечается.
Замечание
В языке Java нет целочисленного переполнения.
Операции сравнения
Сдвоенные символы записываются без пробелов, их нельзя переставлять местами, запись => будет неверной.
Результат сравнения — логическое значение: true, в результате, например, сравнения 3 != 5; или false, например, в результате сравнения 3 == 5.
Для записи сложных сравнений следует привлекать логические.операции. Например, в вычислениях часто приходится делать проверки вида а < х < b. Подобная запись на языке Java приведет к сообщению об ошибке, поскольку первое сравнение, а < х, даст true или false, a Java не знает, больше это, чем b, или меньше. В данном случае следует написать выражение (а < х) && (х < b), причем здесь скобки можно опустить, написать просто а < х && х < b, но об этом немного позднее.
Иногда приходится изменять значения отдельных битов в целых данных. Об этом говорит сайт https://intellect.icu . Это выполняется с помощью побитовых (bitwise) операций путем наложения маски. В языке Java есть четыре побитовые операции:
Они выполняются поразрядно, после того как оба операнда будут приведены к одному типу int или long, так же как и для арифметических операций, а значит, и к одной разрядности. Операции над каждой парой битов выполняются согласно табл. 1.3.
Таблица 1.3. Побитовые операции
nl
|
n2
|
~nl
|
nl & n2
|
nl | n2
|
nl ^ n2
|
1
1 0 0 |
1
0 1 0 |
0
0 1 1 |
1
0 0 0 |
1
1 1 0 |
0
1 1 0 |
В нашем примере b1 == 50, двоичное представление 00110010, b2 == -99, двоичное представление10011101. Перед операцией происходит повышение до типа int. Получаем представления из 32-х разрядов для b1 — 0...00110010, для b2 — 1...l0011101. В результате побитовых операций получаем:
Двоичное представление каждого результата занимает 32 бита.
Заметьте, что дополнение ~х всегда эквивалентно (-x)-1.
Сдвиги
В языке Java есть три операции сдвига двоичных разрядов:
Эти операции своеобразны тем, что левый и правый операнды в них имеют разный смысл. Слева стоит значение целого типа, а правая часть показывает, на сколько двоичных разрядов сдвигается значение, стоящее в левой части.
Например, операция b1<< 2 сдвинет влево на 2 разряда предварительно повышенное значение 0...00110010 переменной b1, что даст в результате 0...011001000, десятичное 200. Освободившиеся справа разряды заполняются нулями, левые разряды, находящиеся за 32-м битом, теряются.
Операция b2 << 2 сдвинет повышенное значение 1...10011101 на два разряда влево. В результате получим 1...1001110100, десятичное значение —396.
Заметьте, что сдвиг влево на п разрядов эквивалентен умножению числа на 2 в степени n.
Операция b1 >> 2 даст в результате 0...00001100, десятичное 12, а b2 >> 2 — результат 1..11100111, десятичное -25, т. е. слева распространяется старший бит, правые биты теряются. Это так называемыйарифметический сдвиг.
Если же мы хотим получить логический сдвиг исходного значения loomoi переменной b2, т. е., 0...00100111, надо предварительно наложить на b2 маску, обнулив старшие биты: (b2 & 0XFF) >>> 2.
Замечание
Будьте осторожны при использовании сдвигов вправо.
Вещественные типы
Вещественных типов в Java два: float и double. Они характеризуются разрядностью, диапазоном значений и точностью представления, отвечающим стандарту IEEE 754-1985 с некоторыми изменениями. К обычным вещественным числам добавляются еще три значения»
1. Положительная бесконечность, выражаемая константой POSITIVE_INFINITY и возникающая при переполнении положительного значения, например, в результате операции умножения 3.0*6е307.
2. Отрицательная бесконечность NEGATIVE_INFINITY.
3. "Не число", записываемое константой NaN (Not a Number) и возникающее при делении вещественного числа на нуль или умножении нуля на бесконечность.
В главе 4 мы поговорим о нихподробнее.
Кроме того, стандарт различает положительный и отрицательный нуль, возникающий при делении на бесконечность соответствующего знака, хотя сравнение о.о == -о.о дает true.
Операции с бесконечностями выполняются по обычным математическим правилам.
Во всем остальном вещественные типы — это обычные, вещественные значения, к которым применимы все арифметические операции и сравнения, перечисленные для целых типов. Характеристики вещественных типов приведены в табл. 1.4.
Знатокам C/C++
В языке Java взятие остатка*от деления %, инкремент ++ и декремент — применяются и к вещественным типам.
Таблица 1.4. Вещественные типы
Тип
|
Разрядность
|
Диапазон
|
Точность
|
float
|
4
|
3,4е-38 < |х| < 3,4е38
|
7—8 цифр
|
double
|
8
|
1,7е-308<|х|<1,7е308
|
17 цифр
|
Примеры определения вещественных типов:
float х = 0.001, у = -34.789;
double 21 = -16.2305, z2;
Поскольку к вещественным типам применимы все арифметические операции и сравнения, целые и вещественные значения можно смешивать в операциях. При этом правило приведения типов дополняется такими условиями:
Операции присваивания
Операция присваивания действует так: выражение, стоящее после знака равенства, вычисляется и приводится к типу переменной, стоящей слева от знака равенства. Результатом операции будет приведенное значение правой части.
Операция присваивания имеет еще одно, побочное, действие: переменная, стоящая слева, получает приведенное значение правой части, старое ее значение теряется.
В операции присваивания левая и правая части неравноправны, нельзя написать 3.5 = х. После операции х = у изменится переменная х, став равной у, а после у = х изменится у.
Кроме простой операции присваивания есть еще 11 составных операций присваивания (compound assignment operators): +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=; >>>=. Символы записываются без пробелов, нельзя переставлять их местами.
Все составные операции присваивания действуют по одной схеме:
х ор= а эквивалентно х = (тип х), т. е. (х ор а).
Напомним, что переменная ind типа short определена у нас со значением 1. Присваивание ind +=7.8 даст в результате число 8, то же значение получит и переменная ind. Эта операция эквивалентна простой операции присваивания ind = (short)(ind + 7.8).
Перед присваиванием, при необходимости, автоматически производится приведение типа. Поэтому:
byte b = 1;
b = b + 10; // Ошибка!
b += 10; // Правильно!
Перед сложением ь + 50 происходит повышение ь до типа int, результат сложения тоже будет типа int и, в первом случае, не может быть Присвоен переменной ь без явного приведения типа. Во втором случае перед присваиванием произойдет сужение результата сложения до типа byte.
Условная операция
Эта своеобразная операция имеет три операнда. Вначале записывается произвольное логическое выражение, т. е. имеющее в результате true или false, затем знак вопроса, потом два произвольных выражения, разделенных двоеточием, например,
х < 0 ? 0 : х
х > у ? х — у : х + у
Это позволяет написать n == о ? да : m / n не опасаясь деления на нуль. Условная операция поначалу кажется странной, но она очень удобна для записи небольших разветвлений.
Выражения
Из констант и переменных, операций над ними, вызовов методов и скобок составляются выражения(expressions). Разумеется, все элементы выражения должны быть совместимы, нельзя написать, например, 2 + true. При вычислении выражения выполняются четыре правила:
1. Операции одного приоритета вычисляются слева направо: х + у + z вычисляется как (х + у) + z. Исключение: операции присваивания вычисляются справа налево: х = у = z вычисляется как х = (у = z).
2. Левый операнд вычисляется раньше правого.
3. Операнды полностью вычисляются перед выполнением операции.
4. Перед выполнением составной операции присваивания значение левой части сохраняется для использования в правой части.
int а = 3, b = 5;
Тогда результатом выражения ь + (Ь = 3) будет число 8; но результатом выражения (Ь = 3) + ь будет число 6. Выражение ь += (Ь = 3) даст в результате 8, потому что вычисляется как первое из приведенных выше выражений.
Знатокам C/C++
Большинство компиляторов языка C++ во всех этих случаях вычислят значение 8.
Четвертое правило можно продемонстрировать так. При тех же определениях а и ь в результате вычисления выражения ь += а += ь += 7 получим 20. Хотя операции присваивания выполняются справа налево и после первой, правой, операции значение ь становится равным 12, но в последнем, левом, присваивании участвует старое значение ь, равное 5. А в результате двух последовательных вычислений а += b += 7; b += а; получим 27, поскольку во втором выражении участвует уже новое значение переменной ь, равное 12.
Знатокам C/C++
Большинство компиляторов C++ в обоих случаях вычислят 27.
Выражения могут иметь сложный и запутанный вид. В таких случаях возникает вопрос о приоритете операций, о том, какие операции будут выполнены в первую очередь. Естественно, умножение и деление производится раньше сложения и вычитания. Остальные правила перечислены в следующем разделе.
Порядок вычисления выражения всегда можно отрегулировать скобками, их можно Ътавить сколько угодно. Но здесь важно соблюдать "золотую середину". При большом количестве скобок снижается наглядность выражения и легко ошибиться в расстановке скобок. Если выражение со скобками корректно, то компилятор может отследить только парность скобок, но не правильность их расстановки.
Приоритет операций
Операции перечислены в порядке убывания приоритета. Операции на одной строке имеют одинаковый приоритет.
1. Постфиксные операции ++ и —.
2. Префиксные операции ++ и —, дополнение ~ и отрицание !.
3. Приведение типа (тип).
4. Умножение *, деление / и взятие остатка %.
5. Сложение + и вычитание -.
6. Сдвиги <<, >>, >>>.
8. Сравнения ==, !=.
9. Побитовая конъюнкция &.
10. Побитовое исключающее ИЛИ ^.
11. Побитовая дизъюнкция | .
12. Конъюнкция &&.
13. Дизъюнкция | | .
14. Условная операция ?: .
15. Присваивания =, +=, -=, *=, /=, %=, &=, ^=, |=, <<, >>, >>>.
Знатокам C/C++
В Java нет операции "запятая", но список выражений используется в операторе цикла for.
Операторы
Как вы знаете, любой алгоритм, предназначенный для выполнения на компьютере, можно разработать, используя только линейные вычисления, разветвления и циклы.
Записать его можно в разных формах: в виде блок-схемы, на псевдокоде, на обычном языке, как мы записываем кулинарные рецепты, или как-нибудь еще "алгоритмы". ,-.
Всякий язык программирования должен иметь средства записи алгоритмов. Они называются операторами(statements) языка. Минимальный набор опе-
раторов должен содержать оператор для записи линейных вычислений, условный оператор для записи разветвлении и оператор цикла.
Обычно состав операторов языка программирования шире: для удобства записи алгоритмов в язык включаются несколько операторов цикла, оператор варианта, операторы перехода, операторы описания объектов.
Набор операторов языка Java включает:
Здесь приведен не весь набор операторов Java, он будет дополняться по мере изучения языка.
Замечание
В языке Java нет оператора goto.
Всякий оператор завершается точкой с запятой.
Знатокам Pascal
Точка с запятой в Java не разделяет операторы, а является частью оператора.
Линейное выполнение алгоритма обеспечивается последовательной записью операторов. Переход со строки на строку в исходном тексте не имеет никакого значения для компилятора, он осуществляется только для наглядности и читаемости текста.
Блок
Блок заключает в себе нуль или несколько операторов с целью использовать их как один оператор в тех местах, где по правилам языка можно записать только один оператор. Например, {х = 5; у = ?;}. Можно записать и пустой блок, просто пару фигурных скобок {}.
Блоки операторов часто используются для ограничения области действия переменных и просто для улучшения читаемости текста программы.
Операторы присваивания
Разница между операцией и оператором присваивания носит лишь теоретический характер. Присваивание чаще используется как оператор, а не операция.
Условный оператор
Условный оператор (if-then-else statement) в языке Java записывается так:
if (логВыр) оператор1 else оператор2
и действует следующим образом. Сначала вычисляется логическое выражение логвыр. Если результат true, то действует оператор! и на этом действие условного оператора завершается, оператор2 не действует, далее будет выполняться следующий за if оператор. Если результат false, то действуетоператор2, при этом оператор,! вообще не выполняется.
Условный оператор может быть сокращенным (if-then statement):
if (логВыр) оператор!
и в случае false не выполняется ничего.
Синтаксис языка не позволяет записывать несколько операторов ни в ветви then, ни в ветви else. При необходимости составляется блок операторов в фигурных скобках. Соглашения "Code Conventions" рекомендуют всегда использовать фигурные скобки и размещать оператор на нескольких строках с отступами, как в следующем примере:
if (а < х) {
х = а + b; } else {
х = а — b;
}
Это облегчает добавление операторов в каждую ветвь при изменении алгоритма. Мы не будем строго следовать этому правилу, чтобы не увеличивать объем книги.
Очень часто одним из операторов является снова условный оператор, например:
if (п == 0}{
sign = 0;
} else if (n < 0){
} else {
sign = 1;
}
При этом может возникнуть такая ситуация ("dangling else"):
int ind = 5, х = 100;
if (ind >= 10) if (ind <= 20) x = 0; else x = 1;
Сохранит переменная х значение юо или станет равной 1? Здесь необходимо волевое решение, и общее для большинства языков, в. том числе и Java,. правило таково: ветвь else относится к ближайшему слева услдвиюif, не имеющему своей ветви else. Поэтому в нашем примере переменная х останется равной юо.
if (ind > 10) {if (ind < 20) x = 0; else x = 1;}
Вообще не стоит увлекаться сложными вложенными условными операторами. Проверки условий занимают много времени. По возможности лучше использовать логические операции, например, в нашем примере можно написать
if (ind >= 10 && ind <= 20) х = 0; else х = 1;
В листинге 1.4 вычисляются корни квадратного уравнения ах2 + bх + с = 0 для любых коэффициентов, в том числе и нулевых.
Листинг 1.4. Вычисление корней квадратного уравнения
class QuadraticEquation{
public static void main(String[] args){
double a = 0.5, Ъ = -2.7, с = 3.5, d, eps=le-8;
if (Math.abs(a) < eps)
if (Math.abs(b) < eps)
if (Math.abs(c) < eps) // Все коэффициенты равны нулю
System.out.println("Решение —любое число");
else
System.out.println("Решений нет");
else
System.out.println("xl = x2 = " +(-c / b) ) ;
else { // Коэффициенты не равны нулю
if((d = b**b — 4*a*c)< 0.0){ // Комплексные корни
d = 0.5 * Math.sqrt(-d) / a;
a = -0.5 * b/ a;
System.out.println("xl = " +a+ " +i " +d+
} else {
// Вещественные корни
d =0.5 * Math.sqrt(d) / a;
a = -0.5 * b / a;
System.out.println("x1 = " + (a + d) + ", x2 = " +(a - d));
}
}
)
В этой программе использованы методы вычисления модуля absо и кш; ратного корня sqrt о вещественного числа из встроенного в Java API класса Math. Поскольку все вычисления-С вещественными числами производятся приближенно, мы считаем, что коэффициент уравнения равен нулю, если его модуль меньше 0,00000001. Обратите внимание на то, как в методе println о используется сцепление строк, и на то, как операция присваивания при вычислении дискриминанта вложена в логическое выражение.
"Продвинутым" пользователям
Вам уже хочется вводить коэффициенты а, b и с прямо с клавиатуры? Пожалуйста, используйте метод System, in. read (byte [ ] bt), но учтите, что этот метод записывает вводимые цифры в массив байтов bt в кодировке ASCII, в каждый байт по одной цифре. Массив байтов затем надо преобразовать в вещественное число, например, методом Double(new String(bt)).doubleValue0 . Непонятно? Но это еще не все, нужно обработать исключительные ситуации, которые могут возникнуть при вводе (см. главу 18).
К сожалению, в одной статье не просто дать все знания про операции в java. Но я - старался. Если ты проявишь интерес к раскрытию подробностей,я обязательно напишу продолжение! Надеюсь, что теперь ты понял что такое операции в java и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Объектно-ориентированное программирование ООП
Комментарии
Оставить комментарий
Объектно-ориентированное программирование ООП
Термины: Объектно-ориентированное программирование ООП