Лекция
Привет, Вы узнаете о том , что такое 3 Модульность в объектно-ориентированном программировании, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое 3 Модульность в объектно-ориентированном программировании , настоятельно рекомендую прочитать все из категории Объектно-ориентированное программирование ООП.
Модульность в ООП - это принцип, который утверждает : каждый класс должен составлять отдельный модуль.
Второе [из правил, которые я решил твердо соблюдать] - делить каждую из рассматриваемых мною трудностей на столько частей, сколько потребуется, чтобы лучше их разрешить.
Третье - располагать свои мысли в определенном порядке, начиная с предметов простейших и легко познаваемых, и восходить мало-помалу, как по ступеням, до познания наиболее сложных, допуская существование порядка даже среди тех, которые в естественном ходе вещей не предшествуют друг другу.
Рене Декарт, "Рассуждения о методе" (1637)
Чтобы обеспечить расширяемость (extendibility) и повторное использование (reusability), двух основных факторов качества, предложенных в лекции 1, необходима система с гибкой архитектурой, состоящая из автономных программных компонент. Именно поэтому в лекции 1 введен термин модульность (modularity), сочетающий оба фактора.
Модульное программирование ранее понималось как сборка программ из небольших частей, обычно подпрограмм. Но такой подход не может обеспечить реальную расширяемость и повторное использование программного продукта, если не гарантировать, что элементы сборки - модули - являются самодостаточными и образуют устойчивые структуры. Любое достаточно полное определение модульности должно обеспечивать реализацию этих свойств.
Таким образом, метод проектирования программного продукта является модульным, если он помогает проектировщикам создать систему, состоящую из автономных элементов с простыми и согласованными структурными связями между ними. Цель этой лекции - детализация этого неформального определения и выяснение того, какими конкретно свойствами должен обладать метод, заслуживающий название "модульного". Наше внимание будет сосредоточено на этапе проектирования, но все идеи применимы и к ранним этапам - анализа и спецификации, также как и к этапам разработки и сопровождения.
Рассмотрим модульность с разных точек зрения. Введем набор дополнительных свойств: пять критериев (criteria), пять правил (rules) и пять принципов (principles) модульности, обеспечивающих при их совместном использовании выполнение наиболее важных требований, предъявляемых к методу модульного проектирования.
Для практикующего разработчика ПО принципы и правила не менее важны, чем критерии. Различие лишь в причинной связи: критерии являются взаимно независимыми (метод может удовлетворять одному из них и в тоже время противоречить оставшимся), в то время как правила следуют из критериев, а принципы следуют из правил.
Можно было бы ожидать, что эта лекция начнется с подробного описания того, как выглядит модуль. Но это не так, и для этого есть серьезные основания. Задача этой и двух следующих лекций - анализ свойств, которыми должна обладать надлежащим образом спроектированная модульная структура. Вопросом о виде модулей мы займемся в конце нашего обсуждения, а не в его начале. И пока мы не дойдем до этой точки, слово "модуль" будет означать компонент разбиения рассматриваемой системы. Если вы знакомы с не ОО-методами, то, вероятно, вспомните о подпрограммах, имеющихся в большинстве языков программирования и проектирования, или, быть может, о пакетах (packages) языка Ada и (правда, под другим названием) языка Modula. Наконец, в последующих лекциях наше обсуждение приведет к ОО-виду модуля - классу. Даже если вы уже знакомы с классами и ОО-методами, все же следует прочитать эту лекцию для понимания требований, предъявляемых к классам, - это поможет правильному их конструированию.
Метод проектирования, который можно называть "модульным", должен удовлетворять пяти основным требованиям:
Метод проектирования удовлетворяет критерию Декомпозиции, если он помогает разложить задачу на несколько менее сложных подзадач, объединяемых простой структурой, и настолько независимых, что в дальнейшем можно отдельно продолжить работу над каждой из них.
Такой процесс часто будет циклическим, поскольку каждая подзадача может оказаться достаточно сложной и потребует дальнейшего разложения.
Рис. 3.1. Декомпозиция
Следствием требования декомпозиции является разделение труда (division of labor): как только система будет разложена на подсистемы, работу над ними следует распределить между разными разработчиками или группами разработчиков. Это трудная задача, так как необходимо ограничить возможные взаимозависимости между подсистемами:
Наиболее очевидным примером обсуждаемого метода3.1) , удовлетворяющим критерию декомпозиции, является метод нисходящего (сверху вниз) проектирования (top-down design). В соответствии с этим методом разработчик должен начать с наиболее абстрактного описания функции, выполняемой системой. Затем последовательными шагами детализировать это представление, разбивая на каждом шаге каждую подсистему на небольшое число более простых подсистем до тех пор, пока не будут получены элементы с настолько низким уровнем абстракции, что становится возможной их непосредственная реализация. Этот процесс можно представить в виде дерева.
Рис. 3.2. Иерархия нисходящего проектирования
Типичным контрпримером (counter-example) является любой метод, предусматривающий включение в разрабатываемую систему модуля глобальной инициализации. Многие модули системы нуждаются в инициализации - открытии файлов или инициализации переменных.
Каждый модуль должен произвести эту инициализацию до начала выполнения непосредственно возложенных на него операций. Могло бы показаться, что все такие действия для всех модулей системы неплохо сосредоточить в одном модуле, который проинициализирует сразу все для всех. Подобный модуль будет обладать хорошей "согласованностью во времени" (temporal cohesion) в том смысле, что все его действия выполняются на одном этапе работы системы. Однако для получения такой "согласованности во времени", придется нарушать автономию других модулей. Придется модулю инициализации дать право доступа ко многим структурам данных, принадлежащим различным модулям системы и требующим специфических действий по их инициализации. Это означает, что автор модуля инициализации должен будет постоянно следить за структурами данных других модулей и взаимодействовать с их авторами. А это несовместимо с критерием декомпозиции.
Термин "согласованность во времени" пришел из метода, известного как структурное проектирование (см. комментарии к библиографии).
В объектно-ориентированном методе каждый модуль должен самостоятельно инициализировать свои структуры данных. |
Метод удовлетворяет критерию Модульной Композиции, если он обеспечивает разработку элементов программного продукта, свободно объединяемых между собой для получения новых систем, быть может, в среде, отличающейся от той, для которой эти элементы первоначально разрабатывались.
Композиция определяет процесс, обратный декомпозиции: элементы программного продукта извлекаются из того контекста, для которого они были первоначально предназначены, для использования их вновь в ином контексте.
Рис. 3.3. Композиция
Метод модульного проектирования облегчает этот процесс, создавая автономные элементы программного продукта достаточно независимыми от первоначально поставленной задачи, что делает такое извлечение возможным.
Композиция непосредственно связана с повторным использованием. Этот критерий отражает старую мечту - превратить процесс конструирования программного продукта в работу по складыванию кубиков так, чтобы строить программы из фабрично изготовленных элементов.
Композиция не зависит от декомпозиции. Фактически эти критерии часто противоречат друг другу. Например, метод нисходящего проектирования, удовлетворяющий, как уже было показано, критерию декомпозиции, обычно приводит к созданию таких модулей, которые нелегко сочетать с модулями, полученными из других источников. При такой декомпозиции модули обычно тесно связаны с теми специфическими требованиями, которые привели к их разработке, и не могут быть приспособлены к использованию в других условиях. Метод нисходящего проектирования не дает рекомендаций по разработке модулей, удовлетворяющих общим требованиям. В нем нет средств такой разработки, он не позволяет ни избежать, ни хотя бы обнаружить программную избыточность модулей, получаемых в различных частях иерархии.
Как композиция, так и декомпозиция являются частью требований к модульному методу проектирования. Неизбежна смесь двух подходов к проектированию: сверху-вниз и снизу-вверх. На этот принцип дополнительности обратил внимание Рене Декарт почти четыре столетия тому назад, как видно из сопоставления двух правил его Рассуждений, приведенных в эпиграфе этой лекции.
Метод удовлетворяет критерию Модульной Понятности, если он помогает получить такую программу, читая которую можно понять содержание каждого модуля, не зная текста остальных, или, в худшем случае, ознакомившись лишь с некоторыми из них.
Важность этого критерия следует из его влияния на процесс сопровождения программного продукта. Почти все действия по сопровождению программы, как неизбежные, так и не столь неизбежные, связаны с глубоким пониманием ее элементов. Метод едва ли может называться модульным, если тот, кто читает программный текст, не в состоянии понять его смысл.
Рис. 3.4. Понятность
Этот критерий, подобно четырем остальным, применим к модулям при описании системы на любом уровне: анализа, проектирования, реализации.
В последующих лекциях критерий модульной понятности поможет при рассмотрении двух важных вопросов: как документировать многократно используемые компоненты и как их индексировать, чтобы разработчики программного продукта могли без труда обращаться к ним путем соответствующего запроса. В соответствии с этим критерием информация о компоненте, полезная для документирования или поиска, должна, насколько это возможно, содержаться в тексте самого компонента, тогда средства документирования, индексации или поиска смогут обработать этот компонент и получить требуемую информацию.
Наличие нужной информации в каждом компоненте предпочтительнее хранения ее где-либо в другом месте, например в базе данных для хранения информации о компонентах.
Метод удовлетворяет критерию Модульной Непрерывности, если незначительное изменение спецификаций разработанной системы приведет к изменению одного или небольшого числа модулей.
Этот критерий непосредственно связан с критерием расширяемости. Как подчеркивалось в предыдущей лекции, внесение изменений является неотъемлемой частью процесса разработки программного продукта. Соответствующие требования к программе будут неминуемо изменяться в ходе разработки. Непрерывность означает, что небольшие изменения будут воздействовать только на отдельные модули в структуре системы, а не на всю систему.
Термин "непрерывность" предлагается по аналогии с понятием непрерывной функции в математическом анализе. Математическая функция является непрерывной, если (неформально) малое изменение аргумента приводит к пропорционально малому изменению результата. В нашем случае роль функции играет метод конструирования программного продукта, который может рассматриваться как механизм, получающий на входе спецификации и возвращающий в качестве результата систему, удовлетворяющую заданным требованиям:
Метод_конструирования_ПО: Спецификации -> Система
Рис. 3.5. Непрерывность
Этот математический термин введен здесь лишь по аналогии, поскольку не существует формального понятия размера спецификации и программы. Можно было бы ввести приемлемую меру для определения "небольших" или "больших" изменений программы, но дать подобное определение для спецификаций к программе это уже настоящая проблема. Однако если не претендовать на строгость, то такое интуитивно понятное определение будет соответствовать необходимому требованию к любому модульному методу.
Метод удовлетворяет критерию Модульной Защищенности, если он приводит к архитектуре системы, в которой аварийная ситуация, возникшая во время выполнения модуля, ограничится только этим модулем, или, в худшем случае, распространится лишь на несколько соседних модулей.
Вопрос об отказах и ошибках является основным в программной инженерии. Сейчас речь идет об ошибках периода исполнения программы, связанных с аппаратными прерываниями, ошибочными входными данными или исчерпанием необходимых ресурсов (например, из-за недостаточного объема памяти). Критерий защищенности направлен не на предотвращение или исправление ошибок, а на проблему, непосредственно связанную с модульностью - распространением ошибок в модульной системе.
Рис. 3.6. Нарушение защищенности
Из рассмотренных критериев следуют пять правил, которые должны соблюдаться, чтобы обеспечить модульность:
Первое правило касается отношения между внешней системой и ПО. Следующие четыре правила касаются общей проблемы - как модули общаются между собой. Для получения хорошей модульной архитектуры необходим управляемый и строгий метод обеспечения межмодульных связей.
Любая прикладная система стремится удовлетворить потребности некоторой проблемной области. Если имеется хорошая модель для описания этой проблемной области, то желательно обеспечить четкое отображение структуры проблемы описываемой моделью на структуру системы. Из этого следует первое правило:
Модульная структура, создаваемая в процессе конструирования ПО, должна оставаться совместимой с модульной структурой, создаваемой в процессе моделирования проблемной области.
Эта рекомендация следует, в частности, из двух критериев модульности:
Правило Минимума Интерфейсов ограничивает общее число информационных каналов, связывающих модули системы:
Каждый модуль должен поддерживать связь с возможно меньшим числом других модулей.
Связь между модулями может осуществляться различными способами. Модули могут вызывать друг друга (если они являются процедурами), совместно использовать структуры данных и так далее. Правило Минимума Интерфейсов ограничивает число таких связей.
Рис. 3.7. Виды структур межмодульных связей
В системе, составленной из n модулей, число межмодульных связей должно быть намного ближе к минимальному значению n-1, как показано на рисунке (A), чем к максимальному n (n - 1)/2, как показано на рисунке (B).
Это правило следует, в частности, из критериев непрерывности и защищенности: если между модулями имеется слишком много взаимосвязей, то влияние изменения или ошибки может распространиться на большое число модулей. Оно также имеет отношение к критериям композиции (чтобы модуль мог использоваться в новой программной среде, он не должен зависеть от слишком большого числа других модулей), понятности и декомпозиции.
Вариант (A) на последнем рисунке показывает, как добиться минимального числа связей, n-1, с помощью весьма централизованной структуры: один основной модуль, а все остальные общаются только с ним. Об этом говорит сайт https://intellect.icu . Но имеются намного более "демократические" структуры, такие как (C), содержащие почти такое же число связей. В этой схеме каждый модуль непосредственно общается с двумя ближайшими соседями, центральной власти здесь нет. Такой подход к конструированию программы кажется сначала немного неожиданным, поскольку он не согласуется с традиционной моделью нисходящего проектирования. Но он может приводить к надежным, расширяемым решениям. Это именно такой вид структуры, к созданию которой будет стремиться ОО-метод при его разумном применении.
Правило Слабой связности интерфейсов относится к размеру передаваемой информации, а не к числу связей:
Если два модуля общаются между собой, то они должны обмениваться как можно меньшим объемом информации.
Инженер-электрик сказал бы, что каналы связи между модулями должны иметь ограниченную полосу пропускания:
Рис. 3.8. Канал связи между модулями
Требование Слабой связности интерфейсов следует, в частности, из критериев непрерывности и защищенности.
Особо примечательным контрпримером является конструкция из языка Fortran, знакомая некоторым читателям как "общий блок для мусора" ("garbage common block"). Общим блоком в Fortran'е является директива вида:
COMMON /общее_имя/ переменная1 : переменнаяn.
Переменные, перечисленные в блоке, доступны во всех модулях, содержащих директиву COMMON с тем же общим_именем. Нередко встречаются программы на Fortran'е, в которых каждый модуль содержит одну и ту же огромную директиву COMMON с перечислением всех существенных переменных и массивов, так что каждый модуль может непосредственно обращаться к любым данным программы.
Возникающие здесь затруднения состоят в том, что любой из модулей может неправильно использовать общие данные, а модули тесно связаны между собой; поэтому проблемы реализации непрерывности (распространение изменений) и защищенности (распространение ошибок) являются чрезвычайно трудно разрешимыми. Тем не менее, эта освященная годами техника все еще остается любимой многими программистами, хотя и ведет к длительным ночным отладочным бдениям.
Разработчики, пользующиеся языками с вложенными структурами, испытывают такие же затруднения. При наличии блочной структуры, введенной в языке Algol и поддерживаемой, в более ограниченной форме, в языке Pascal, можно "вкладывать" блоки, содержащиеся внутри пар begin ... end, внутрь других блоков. К тому же каждый блок может вводить свои собственные переменные, которые имеют смысл лишь в синтаксическом контексте (syntactic scope) этого блока. Например:
local -- Начало блока B1
x, y: INTEGER
do
... Команды блока B1 ...
local -- Начало блока B2
z: BOOLEAN
do
... Команды блока B2 ...
end -- Конец блока B2
local -- Начало блока B3
y, z: INTEGER
do
... Команды блока B3 ...
end -- Конец блока B3
... Команды блока B1 (продолжение) ...
end -- Конец блока B1
Переменная x доступна для всех команд в этом фрагменте программы, в то время как области действия двух переменных с именем z (одна типа BOOLEAN, другая типа INTEGER) ограничены блоками B2 и B3 соответственно. Подобно x, переменная y объявлена на уровне блока B1, но ее область действия не включает блока B3, где другая переменная с тем же именем и тем же типом локально имеет приоритет над самой ближней внешней переменной y. В Pascal'е этот вид блочной структуры существует лишь для блоков, связанных с подпрограммами (процедурами и функциями).3.4)
При наличии блочной структуры, эквивалентом "мусорного" общего блока Fortran'а является объявление всех переменных на самом верхнем (глобальном) уровне. В языках на основе языка С таким эквивалентом является объявление всех переменных внешними (external). (О кластерах см. курса "Основы объектно-ориентированного проектирования". Альтернатива вложенности рассматривается в разделе "Архитектурная роль выборочного экспорта (selective exports)".)
Использование блочной структуры является оригинальной идеей, но это может приводить к нарушению правила Слабой связности Интерфейсов. По этой причине мы будем воздерживаться от применения ее в объектно-ориентированной нотации, развиваемой далее в этом курсе. Язык Simula - объектно-ориентированная производная от Algol'а - поддерживает блочную структуру классов. Опыт работы с ним показал, что способность создавать вложенные классы является излишней при наличии некоторых возможностей, обеспечиваемых механизмом наследования. Структура объектно-ориентированного программного обеспечения содержит три уровня: система является набором кластеров; кластер является набором классов; класс является набором компонент (атрибутов (attributes) и методов (routines)). Кластеры скорее организационное средство, чем лингвистическая конструкция, могут быть вложенными, что позволяет руководителю проекта структурировать большую систему на любое необходимое число уровней; но классы, как и компоненты, имеют одноуровневую плоскую (flat) структуру, поскольку вложенность на любом из этих уровней приведет к излишнему усложнению.
Четвертое правило является еще одним шагом к укреплению тоталитарного режима в обществе модулей: требуется не только, чтобы любые переговоры ограничивались лишь несколькими участниками и были немногословными; необходимо, чтобы такие переговоры были публичными и гласными!
Всякое общение двух модулей A и B между собой должно быть очевидным и отражаться в тексте A и/или B.
За этим правилом стоят критерии:
Одной из проблем, возникающих при применении правила Явных Интерфейсов, является то, что межмодульная связь может осуществляться не только через вызов процедуры; источником косвенной связи может быть, например, совместное использование данных (data sharing):
Рис. 3.9. Совместное использование данных
Предположим, что модуль A изменяет данные, а модуль B использует тот же элемент данных x. Тогда A и B оказываются фактически связанными через x, хотя между ними может и не быть явной взаимосвязи, например, вызова процедуры.
Правило Скрытия Информации можно сформулировать следующим образом:
Разработчик каждого модуля должен выбрать некоторое подмножество свойств модуля в качестве официальной информации о модуле, доступной авторам клиентских модулей.
Применение этого правила означает, что каждый модуль известен всем остальным (то есть разработчикам других модулей) через некоторое официальное описание, или так называемые общедоступные (public) свойства.
Конечно, таким описанием может быть весь текст модуля (текст программы, текст проекта): он и обеспечивает правильное представление о модуле, поскольку это и есть модуль! Но правило Скрытия Информации устанавливает, что в общем случае это не обязательно: описание должно включать лишь некоторые из свойств модуля. Остальные свойства должны оставаться не общедоступными, или закрытыми (секретные) (secret). Вместо терминов - общедоступные и закрытые свойства - используются также термины: экспортируемые и частные (скрытые) (private) свойства. Общедоступные свойства модуля известны также как интерфейс (interface) модуля (не следует путать с пользовательским интерфейсом системы программирования).
В основе правила Скрытия Информации лежит критерий непрерывности. Предположим, что в некотором модуле происходят изменения, касающиеся лишь его скрытых элементов и не затрагивающие общедоступных свойств; тогда на другие обращающиеся к нему модули, называемые его клиентами, эти изменения не подействуют. Чем меньше общедоступная часть, тем больше шансов на то, что изменения в модуле будут содержаться в его скрытой части.
Можно изобразить модуль, поддерживающий правило Скрытия Информации, в виде айсберга; лишь его верхушка - интерфейс - видна клиентам.
Рис. 3.10. Модуль в условиях скрытия информации
В качестве характерного примера рассмотрим процедуру поиска по ключу атрибутов, хранящихся в таблице, такой как картотека личного состава или таблица идентификаторов компилятора. Эта процедура существенно зависит от способа представления таблицы - последовательный массив или файл, хэш-таблица, двоичное или индексное (B-Tree) дерево и т.д. Скрытие информации означает, что выбранный способ реализации таблицы не влияет на использование такой процедуры. Модули-клиенты не должны страдать от каких-либо изменений в реализации программы.
Правило скрытия информации придает особое значение отделению описания функции от ее реализации, - что делает функция и как она это делает - разные вещи. Помимо критерия непрерывности, это правило связано также с критериями декомпозиции, композиции и понятности. Нельзя независимо разрабатывать модули системы, комбинировать существующие модули или понимать действие отдельных модулей, если неизвестно в точности, что каждый из них может (или не может) ожидать от других модулей.
Какие же из свойств модуля должны быть общедоступными, а какие - скрытыми? Как правило, в общедоступную часть следует включать функциональность, заданную спецификацией модуля, а все, что связано с реализацией этих функциональных возможностей, должно быть скрыто, предохраняя другие модули от последующих изменений реализации программы.
Однако эта
продолжение следует...
Часть 1 3 Модульность в объектно-ориентированном программировании
Часть 2 Пять принципов - 3 Модульность в объектно-ориентированном программировании
Часть 3 Ключевые концепции - 3 Модульность в объектно-ориентированном программировании
Комментарии
Оставить комментарий
Объектно-ориентированное программирование ООП
Термины: Объектно-ориентированное программирование ООП