Лекция
Привет, Вы узнаете о том , что такое Математические модели сигналов, Разберем основные их виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое Математические модели сигналов , настоятельно рекомендую прочитать все из категории Теория сигналов и линейных систем.
Сигнал это физический процесс, предназначенный для передачи информации. Информация - сведения о поведении интересующего нас явления, события или объекта. В электронике это ток или напряжение, отображающее передаваемое сообщение или информацию о состоянии исследуемого объекта, которое изменяется во времени или в пространстве.
Отсюда математически сигнал может быть описан некоторой функцией:
1) s(t )– временная.
2) s (r , t )– пространственно-временная функция времени.
В дальнейшем будем рассматривать лишь временные сигналы..
Математическая модель – выбранный способ математического описания сигнала отображающий наиболее существенные свойства сигнала. На основе математической модели можно произвести классификацию сигналов с целью определения их общих свойств и принципиальных отличий.
Теория анализа и обработки физических данных базируется на математических моделях соответствующих физических полей и физических процессов, на основе которых создаются математические модели сигналов. Математические модели сигналов дают возможность обобщенно, абстрагируясь от физической природы, судить о свойствах сигналов, предсказывать изменения сигналов в изменяющихся условиях, заменять физическое моделирование процессов математическим. С помощью математических моделей имеется возможность описывать свойства сигналов, которые являются главными, определяющими в изучаемых процессах, и игнорировать большое число второстепенных признаков. Знание математических моделей сигналов дает возможность классифицировать их по различным признакам, характерным для того или иного типа моделей. Об этом говорит сайт https://intellect.icu . Так, сигналы разделяются на неслучайные и случайные в зависимости от возможности точного предсказания их значений в любые моменты времени. Сигнал является неслучайным и называется детерминированным, если математическая модель позволяет осуществлять такое предсказание. Детерминированный сигнал задается, как правило, математической функцией или вычислительным алгоритмом, а математическая модель сигнала может быть представлена в виде
s = F(t, z, w,…; A, B, C,…),
где s – информативный параметр сигнала; t, z, w, … – независимые аргументы (время, пространственная координата, частота и др.); A, B, C… – параметры сигналов.
Модель должна быть, по возможности, проще, минимизирована по количеству независимых аргументов и адекватна изучаемому процессу, что во многом предопределяет результаты измерений. Рассмотрим этот вопрос на примере геофизических данных.
Под геофизическим полем понимают собственное или индуцированное определенным внешним воздействием распределение какой-либо физической величины, создаваемое геологическим объектом или геологической структурой в пространстве, во времени или по любому другому аргументу (независимой переменной). В простейшем случае геофизический сигнал - это изменение какой-либо составляющей геофизического поля, т.е. сечение поля по одному из аргументов. В пределе все геофизическое поле в целом может рассматриваться как первичный многомерный сигнал в прямом физическом отображении, с которого путем измерений могут сниматься формализованные копии определенных составляющих (сечений) сигнала на материальные носители информации.
Геофизическим полям в определенных условиях их регистрации соответствуют определенные математические модели сигналов, т.е. их описание на каком-либо формальном языке. Математическое описание не может быть всеобъемлющим и идеально точным и, по существу, всегда отображает не реальные объекты, а их упрощенные (гомоморфные) модели. Модели могут задаваться таблицами, графиками, функциональными зависимостями, уравнениями состояний и переходов из одного состояния в другое и т.п. Формализованное описание может считаться математической моделью оригинала, если оно позволяет с определенной точностью прогнозировать состояние и поведение изучаемых объектов путем формальных процедур над их описанием.
Неотъемлемой частью любой математической модели сигнала является область определения сигнала, которая устанавливается интервалом задания независимой переменной. Примеры задания интервала для переменных:
a ≤ x ≤ b, x О [a, b].
a < y ≤ b, y О (a, b].
a < z < b, z О (a, b).
Пространство значений независимой переменной обычно обозначается через индекс R. Так, например, R:=(-Ґ , +Ґ ), x О R.
Кроме задания области определения сигнала могут быть также заданы виды численных значений переменных (целые, рациональные, вещественные, комплексные).
Математические модели полей и сигналов на первом этапе обработки и анализа результатов наблюдений должны позволять в какой-то мере игнорировать их физическую природу и возвращать ее в модель только на заключительном этапе интерпретации данных.
Примеры
Математическая модель сигнала GPS
Исследование, описанное в статье про Математические модели сигналов, подчеркивает ее значимость в современном мире. Надеюсь, что теперь ты понял что такое Математические модели сигналов и для чего все это нужно, а если не понял, или есть замечания, то не стесняйся, пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Теория сигналов и линейных систем
Из статьи мы узнали кратко, но содержательно про
Комментарии
Оставить комментарий
Теория сигналов и линейных систем
Термины: Теория сигналов и линейных систем